## File-1: Electron Spin Resonance (ESR)-PRINCIPLE

Electron Spin Resonance-ESR spectra recorded using suitable microwave and varying magnetic field is shown by molecules, ions, or atoms possessing unpaired electrons.



H<sub>o</sub> (Applied magnetic field)

Zeeman Hamiltonian for the interaction of an electron with the magnetic filed is

 $H = g\beta H S_z$ Where

| Ι                                                                 | =    | 2.0023193 for free electron                                            |  |  |  |
|-------------------------------------------------------------------|------|------------------------------------------------------------------------|--|--|--|
| β                                                                 | =    | 9.274096 x 10 <sup>-21</sup> erg gauss <sup>-1</sup> . (Bohr Magneton) |  |  |  |
| Η                                                                 | =    | Applied filed Strength                                                 |  |  |  |
| Sz                                                                | =    | Spin Operator.                                                         |  |  |  |
| The EPR experiment is generally carried out at a fixed frequency. |      |                                                                        |  |  |  |
| $\mathbf{v}$                                                      | Dand | 0.5  CHz 2400 Cause                                                    |  |  |  |

| A – Daliu | • | 9.5 UHZ, | J400 Gauss   |
|-----------|---|----------|--------------|
| Q – Band  | : | 35 GHz,  | 12,500 Gauss |
| K – Band  | : | 24 GHz,  | 8,600 Gauss  |

## Sampling:

Water, alcohols, and other high dielectric constant solvents are not the solvents for EPR because they strongly absorb microwave .They can be used when the sample has a strong resonance and is contained in a specially designed narrow cell. EPR measurements on gases, solutions, powders, single crystals and frozen solutions can be carried out.