5.5(b): Electronation of Oxygen

5.5(b): ELECTRONATION OF O₂

$$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$$

For the plot of η vs $\log i$ in both acidic and alkaline solution the slope are found

to be 0.12 for reduction and 0.04 for oxidation

i.e., 2.303RT/
$$\overrightarrow{\alpha}F = 0.12$$
; $\overrightarrow{\alpha} = \frac{1}{2}$ (Reduction, cathodic)

2.303RT/
$$\alpha$$
 F = 0.4 α = 1½ (Oxidation, anodic)

Therefore,

$$v = n / (\alpha + \alpha) = 4/2 = 2$$

From the above data we can determine γ and γ

Note the following relations:

ving relations:

$$\alpha = (\gamma / \nu) + r\beta$$

$$\alpha = (\gamma / \nu) + r\beta$$

$$r = n - (\gamma + \gamma)$$

$$\gamma = n - \gamma - r\nu$$

For electronation of O₂

$$\alpha = \frac{1}{2} = (\gamma / 2) + [4 - (\gamma + \gamma)]$$

 $\gamma + \gamma$ can be 4, 3 not 2 or 1 as they will give negative value for γ

But $(\gamma + \gamma)$ = Total electron transferred in all the steps except rds must be an integer & must be less than or equal to n

5.5(b): Electronation of Oxygen

$$(\gamma + \gamma) = 4$$
; $\gamma = 1$ (RDS is non electrochemical)

Similarly, for oxygen evolution: we have $\beta = \frac{1}{2}$, n = 4, $\alpha = \frac{1}{2}$, $\nu = 2$

$$\alpha = 1\frac{1}{2} = (\frac{1}{\gamma/\nu}) + r - r\beta$$

$$= (\frac{1}{\gamma/\nu}) + r(1 - \beta)$$

$$= (\frac{1}{\gamma/\nu}) + [4 - (\gamma + \gamma)](1 - \beta)$$

 $\gamma + \gamma$ can be 4 or 3

There are three possible paths for the electronation of O_2 with the charge transfer step as the rds .

Mechanism: A

$$O_2 + 2M \longrightarrow MO$$

 $2MO + 2H^+ + 2e^- \longrightarrow 2 MOH$
 $2MOH + 2H^+ + 2e^- \longrightarrow 2 M + H_2O$

Mechanism:B

$$O_2 + 2M$$
 $2MO$
 $MO + H_2O$ $MO-H-OH$
 $2MO-H-OH + 2 e^ 2MO-H-OH^-$
 $H-OH^- + H^+$ $MOH + H_2O$
 $2MOH + 2H^+ + 2 e^ 2M + 2H_2O$

Mechanism:C

$$O_2 + 2M$$
 \longrightarrow $2MO$
 $2MO + 2 e^ \longrightarrow$ $2MO^-$
 $MO^- + H^+$ \longrightarrow MOH
 $2MOH + 2 H^+ + 2e^ \longrightarrow$ $2M + 2H_2O$

NOTE: The type of mechanism & rds depends on the nature of the electrode used.