5.5(b): ELECTRONATION OF O_{2}

$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}$
For the plot of $\boldsymbol{\eta}$ vs $\log \mathbf{i}$ in both acidic and alkaline solution the slope are found
to be 0.12 for reduction and 0.04 for oxidation

$$
\begin{array}{ll}
\text { i.e., } 2.303 \mathrm{RT} / \overrightarrow{\alpha \mathrm{F}}=0.12 ; & \vec{\alpha}=1 / 2 \text { (Reduction, cathodic) } \\
2.303 \mathrm{RT} / \stackrel{\leftarrow}{\alpha} \mathrm{F}=0.4 & \alpha^{\boldsymbol{4}}=11 / 2 \text { (Oxidation, anodic) }
\end{array}
$$

Therefore,

$$
v=n /(\vec{\alpha}+\stackrel{+}{\alpha})=4 / 2=2
$$

From the above data we can determine $\stackrel{\leftarrow}{\square}$ and $\vec{\gamma}$
Note the following relations:

$$
\begin{aligned}
& \vec{\alpha}=(\vec{\gamma} / v)+\mathrm{r} \beta \\
& \alpha^{\leftarrow}=(\gamma / v)+r-\mathrm{r} \beta \\
& \mathrm{r}=\mathrm{n}-(\gamma+\vec{\gamma}) \\
& \boldsymbol{\gamma}^{\leftarrow}=\mathrm{n}-\vec{\gamma}-\mathrm{r} \nu
\end{aligned}
$$

For electronation of O_{2}

$$
\vec{\alpha}=1 / 2=(\vec{\gamma} / 2)+[4-(\stackrel{\leftarrow}{\gamma}+\vec{\gamma})]
$$

$\stackrel{\gamma}{\gamma}+\vec{\gamma}$ can be 4,3 not 2 or 1 as they will give negative value for $\vec{\gamma}$

But $(\leftarrow ্ \gamma+\vec{\gamma})=$ Total electron transferred in all the steps except rds must be an integer \& must be less than or equal to n

$5.5(\mathrm{~b}):$ Electronation of Oxygen

$\stackrel{\leftarrow}{\gamma}+\vec{\gamma})=4 ; \vec{\gamma}=1$ (RDS is non electrochemical)
Similarly, for oxygen evolution: we have $\beta=1 / 2, n=4, \overleftarrow{\alpha}=1 \frac{1}{2}, v=2$

$$
\begin{aligned}
\kappa=11 / 2 & =(\stackrel{\leftarrow}{\gamma / v})+\mathrm{r}-\mathrm{r} \beta \\
& =(\stackrel{\leftarrow}{\gamma / v})+\mathrm{r}(1-\beta) \\
& =(\gamma / v)+[4-(\gamma+\vec{\gamma})](1-\beta)
\end{aligned}
$$

$\leftarrow \gamma+\gamma$ can be 4 or 3
There are three possible paths for the electronation of O_{2} with the charge transfer step as the rds .

Mechanism: A

$$
\begin{aligned}
& \mathrm{O}_{2}+2 \mathrm{M} \longrightarrow \mathrm{MO} \\
& 2 \mathrm{MO}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{MOH} \\
& 2 \mathrm{MOH}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{M}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Mechanism:B

Mechanism:C

$\mathrm{O}_{2}+2 \mathrm{M}$	\longrightarrow	2 MO
$2 \mathrm{MO}+2 \mathrm{e}^{-}$	\longrightarrow	$2 \mathrm{MO}^{-}$
$\mathrm{MO}^{-}+\mathrm{H}^{+}$		
$2 \mathrm{MOH}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\longrightarrow	MOH
$2 \mathrm{M}+2 \mathrm{H}_{2} \mathrm{O}$		

NOTE: The type of mechanism $\&$ rds depends on the nature of the electrode used.

