5.2: REDUCTION OF $\mathbf{I}_{3}{ }^{-}$

$\mathrm{I}_{3} 3+2 \mathrm{e} \longrightarrow 3 \mathrm{I}^{-}$

Reaction mechanism:

K_{2}
$\mathrm{I}_{2} \leftrightarrows 2 \mathrm{I}$
K3
$2\left(\mathrm{I}+\mathrm{e} \leftrightarrows \mathrm{I}^{-}\right) \ldots . . . r d s$

Step-1: Fast chemical equilibrium
Law mass action \& Equilibrium constant
Step-2: Fast chemical equilibrium
Law mass action \& Equilibrium constant
Step-3: $\operatorname{Slow}(R D S)$ electrochemical equilibrium
Anidic \& cathodic currents are not equal

Consider Step-3 as RDS: Slow electrochemical equilibrium. $\stackrel{\leftarrow}{\gamma}=0 ; \vec{\gamma}=0$ (There are no electrochemical steps before or after rds) $v=2 ; r=1$

Therefore, $\stackrel{\leftarrow}{\boldsymbol{\alpha}}=\stackrel{\leftarrow}{(\gamma / v)}+\mathrm{r}-\mathrm{r} \beta=0+1-1(1 / 2)=1 / 2$

$$
\vec{\alpha}=(\gamma \vec{v})+r \beta=0+1(1 / 2)=1 / 2
$$

The overall rate of the reaction is equal to the rate of RDS, which is equal to the net current of RDS. The net current of the above RDS (step-3, slow (RDS) electrochemical equilibrium) is given as.

$$
\mathbf{i}=\mathrm{nF}\left(v^{\stackrel{-}{-v}) \rightarrow}=1 . \mathrm{F}\left\{\mathbf{k}-3\left[\mathrm{I}^{-}\right] \mathrm{e}^{(1-\beta) \Delta \varphi \mathrm{F} / \mathrm{RT}}-\mathbf{k}_{3}[\mathrm{I}] \mathrm{e}^{-\beta \Delta \varphi \mathrm{F} / \mathrm{RT}}\right\}\right.
$$

The species, I is an intermediate in the reaction and must be eliminated in terms of I^{-}or $\mathrm{I}_{3}{ }^{-}$or both.

Hence, from steps-1 \& 2 (Fast chemical equilibria)

$$
[\mathrm{I}]=\left\{\mathrm{K}_{2}\left[\mathrm{I}_{2}\right]\right\}^{1 / 2}=\mathrm{K}_{2}\left\{\mathrm{~K}_{1}\left[\mathrm{I}_{3}{ }^{-}\right] /\left[\mathrm{I}^{-}\right]\right\}^{1 / 2}
$$

Substituting for [I]in the Butler-Volmer equation we get

$$
\mathbf{i}=\mathbf{F}\left(\mathbf{k}-3\left[I^{-}\right] \mathbf{e}^{(1-\beta) \Delta \varphi F / R T}-\mathbf{k}_{3} \mathbf{K}_{2} \mathbf{K}_{1}^{1 / 2}\left[\mathbf{I}_{3}\right]^{-1 / 2}\left[I^{-}\right]^{-1 / 2} \mathbf{e}^{-\beta \Delta \varphi F / R T}\right)
$$

Hence, The anodic orders w.r.t $\mathrm{I}^{-}=1 \& \mathrm{I}_{3}{ }^{-}=0$
The cathodic orders w.r.t $\quad I^{-}=-1 / 2 \& I_{3}=1 / 2$
The above equation after replacing $\Delta \varphi$ by $\Delta \varphi_{\mathrm{e}}+\eta$ becomes $\mathbf{i}=\mathbf{i}_{\mathbf{0}}\left[\mathbf{e}^{(\mathbf{1}-\boldsymbol{\beta}) \boldsymbol{\eta} / \mathbf{R T}}-\mathbf{e}^{-\beta \eta \mathbf{F} / \mathbf{R T}}\right]$

Hence, the sum of the coefficients of $\eta F / R T$ is found to be one $\boldsymbol{\alpha}=1 / 2 \& \alpha \overrightarrow{=1 / 2}$
The transfer coefficients appear in terms of β. However, the equation appears to be identical to elementary reaction.
$\stackrel{\rightharpoonup}{\alpha}+\vec{\alpha}>1$ confirms multistep reaction process. But, this being equal to one does not confim that it is an elementary reaction.

