M.Sc (Chemistry)
 ELECTRODE KINETICS - ELECTRODICS-II
 LECTURE NOTES

 MULTI STEP MULTI-ELECTRON REACTION (Simple)

 MULTI STEP MULTI-ELECTRON REACTION (Simple)}

The Multi Step Multi-Electron Reaction occurs in more number of steps such that each one is an elementary step (Electrochemical; Non-Electrochemical) including the rate determining step (RDS) occurring as an elementary step like any other step of the reaction.

Consider a multi electron reaction, $\mathbf{A}+\mathbf{n e} \rightarrow \mathbf{Z}$ occurring as follows:

Note:

Even in a multi-step reaction, a step will occur with the addition only one electron in each step.
$\vec{\gamma}+\mathbf{1}+\stackrel{\rightharpoonup}{\gamma}=\mathbf{n}$
$>$ There may be non-electrochemical steps
> The RDS may electrochemical or non-electrochemical steps

Applying law of mass of action

$$
\rightarrow \mathrm{i}=\stackrel{i}{\mathrm{i}}=\mathrm{i}_{\mathrm{o}} \text { (for all equilibrium steps) }=\mathrm{nF} \mathrm{v}=\mathrm{nF}\{\mathrm{k} \cdot \text { conc }\}
$$

NB: $k=\left(k_{b} T / h\right) \exp \left(-\Delta G^{*} / R T\right)$

$$
\Delta \mathrm{G}^{*}=\Delta \mathrm{G}^{*}{ }_{\mathrm{c}}+\Delta \mathrm{G}^{*}{ }_{\mathrm{ec}}
$$

Where, $\Delta \mathrm{G}^{*}{ }_{\text {ec }}=(1-\beta) \mathrm{F} \Delta \phi$ or $(-\beta) \mathrm{F} \Delta \phi$
So that the term with $\Delta \mathrm{G}^{*}$ c is taken as the chemical reaction rate constants ($\mathrm{k}_{1}, \mathrm{k}_{-1}, \mathrm{k}_{2}, \mathrm{k}_{-2}, \ldots .$.)
i.e., $\mathrm{nF} \overrightarrow{\mathrm{v}}=\mathrm{nF} \overrightarrow{v^{4}}$ (for all equilibrium steps)

Let ($1-\beta$) and β be the symmetry factors of the anodic and cathodic steps respectively

$C_{D}=K_{1} K_{2} K_{3} C_{A} e^{-3 F \Delta \phi / R T} \quad\left(3^{\text {rd }}\right.$ step of the reaction)
Hence, coming to the step before rds

(Step- $\vec{\gamma}$ of the reaction)

The forward electrochemical rate of rds is given by its forward current, i_{R}

$$
\overrightarrow{\mathrm{i}}_{\mathrm{R}}=\mathrm{F} \overrightarrow{\mathrm{k}}_{\mathrm{R}} \mathrm{C}_{\mathrm{R}} \mathrm{e}^{-\beta \mathrm{F} \Delta \phi / \mathrm{RT}}
$$

Substituting for C_{R} as from eq-1

$$
\begin{aligned}
& \mathrm{i}=1
\end{aligned}
$$

Replacing $\Delta \phi$ by $\left(\Delta \phi_{e}+\eta\right)$ we get

$$
\overrightarrow{\mathrm{i}_{\mathrm{R}}}=\mathrm{i}_{0} \exp \{-(\vec{\gamma}+\beta) \mathrm{F} \mathrm{\eta} / \mathrm{RT}\} \quad \text { "For the forward step of rds"........... } 3
$$

The same reasoning can be applied to all the backward reactions of the equilibrium steps from the last ($\mathrm{n}^{\text {th }}$) up to the step before rds viz., $\mathrm{S} \rightarrow \mathrm{R}+\mathrm{e}$.

So that

$\mathrm{C}_{\mathrm{s}}=\prod_{\mathrm{i}}$ $\mathrm{i}=\mathrm{n}$
$C_{Z} \quad e^{\stackrel{\gamma}{F} \Delta \phi / R T}$ \qquad

The reverse electrochemical rate of rds, is given by, is
$\stackrel{\text { is }}{ }=\mathrm{Fk}_{\mathrm{s}} \mathrm{CS}^{(1-\beta) \mathrm{F} \Delta \phi / \mathrm{R}_{3}}$
(For the anodic process, symmetric factor is (1- β) and the free energy term is taken as positive)

Substituting for C_{s} as above

```
    \(\stackrel{\leftarrow}{\gamma}=n-\boldsymbol{\gamma}-1\)
\(\stackrel{\mathrm{IS}_{\mathrm{s}}}{\leftarrow} \boldsymbol{\mathrm { Fk } _ { \mathrm { s } }} \quad \mathrm{K}_{\mathrm{i}} \mathrm{C}_{\mathrm{z}} \mathrm{e}^{\gamma \mathrm{F} \Delta \phi / \mathrm{RT}} \mathrm{e}^{(1-\beta) \mathrm{F} \Delta \phi / \mathrm{RT}}\)7
```

Replacing $\Delta \phi$ by $\left(\Delta \phi_{e}+\eta\right)$ we get

$$
\stackrel{\leftarrow}{i_{s}}=i_{0} \exp \{[\gamma+1-\beta] \mathrm{F} \eta / \mathrm{RT}\} \text { "For the reverse step of rds"............................ } 8
$$

The net reaction rate $=$ Rate of rds $=$ The net current at $\mathrm{rds}, \mathrm{i}_{\mathrm{rds}}$

$$
\begin{align*}
& \mathrm{i}=\mathrm{i}_{\mathrm{rds}}=\mathrm{i}_{\mathrm{S}}^{\leftarrow}-\overrightarrow{\mathrm{i}_{\mathrm{R}}} \\
&=\mathrm{i}_{0}\{\exp \{[(\stackrel{\gamma}{\gamma}+1-\beta] \mathrm{F} \eta / \mathrm{RT}\}-\exp \{-[\overrightarrow{(\gamma}+\beta] \mathrm{F} \eta / \mathrm{RT}\} \\
&=\mathrm{i}_{0}\{\exp \{[(\mathrm{n}-\vec{\gamma}-\beta] \mathrm{F} \mathrm{\eta} / \mathrm{RT}\}-\exp \{-[(\vec{\gamma}+\beta] \mathrm{F} \eta / \mathrm{RT}\} \\
& \mathbf{i}=\mathbf{i}_{0}\left[\mathbf{e}^{\leftarrow \mathrm{F}} \boldsymbol{\eta} / \mathbf{R T}\right. \\
&\left.-\mathbf{e}^{-\boldsymbol{\alpha} \mathbf{F} \boldsymbol{\eta} / \mathbf{R T}}\right]
\end{align*}
$$

Where $\stackrel{\leftarrow}{\alpha}=\stackrel{\leftarrow}{\gamma}+1-\beta=\mathrm{n}-\vec{\gamma}-\beta$ Since, $\stackrel{\rightharpoonup}{\gamma}=\mathrm{n}-\vec{\gamma}-1$

$$
\vec{\alpha}=\vec{\gamma}+\beta
$$

The parameters in eq- $9 \stackrel{\leftarrow}{\alpha} \& \vec{\alpha}$ are the coefficients of "Fך/RT" in the Butler Volmer equation and are called transfer coefficients. The transfer coefficients, similar to symmetry factor, are the slopes of $\log i$ vs η (Tafel stope) - useful in the determination on mechanism of reaction.
$i=i_{0}\left[e^{\alpha / F} \boldsymbol{\eta} / R T \quad-\overrightarrow{e^{-\alpha} F \eta / R T}\right]$
Equation-9.a is reduced to 9c, if the RDS is non-electrochemical

$$
\mathrm{i}=\mathrm{i}_{0}\{\exp \{(\mathrm{n}-\gamma) \mathrm{F} \eta / \mathrm{RT}\}-\exp \{-\gamma \mathrm{F} \eta / \mathrm{RT}\}
$$

HFA

$$
\begin{array}{lll}
\ln \mathrm{i}=\ln \mathrm{i}_{\mathrm{o}}+\stackrel{\leftarrow}{\alpha} \mathrm{F} \eta / \mathrm{RT} & \text { "at high }+ \text { ve } \eta " & \text { Anodic behavior Tafel equation } \\
\ln \mathrm{i}=\ln \mathrm{i}_{\mathrm{o}}-\overrightarrow{\alpha \mathrm{F} \eta} \eta \mathrm{RT} & \text { "at high }- \text { ve } \eta " & \text { Cathodic behavior Tafel equation }
\end{array}
$$

Hence, plot of "In i vs η " should give $\stackrel{\leftarrow}{\alpha}$ and $\vec{\alpha}$ from slope and i_{0} from the intercept.
The above General Butler Volmer equation for a multi-electron process reduces to simple Butler Volmer for a one electron single step process as

$$
\mathbf{i}=\mathbf{i}_{0}\left(\mathbf{e}^{(1-\beta) F \eta / R T}-e^{-\beta F \eta / R T}\right)
$$

For $\mathrm{n}=1$ (one electron reaction), no steps before and after rds i.e., $\vec{\gamma}=0, \stackrel{\leftrightarrow}{\gamma}=0$.

PROBLEM

The Tafel anodic and cathodic slopes $\frac{\partial \Delta \phi}{\partial \log i}$ for a $2 e$ process were found to be $0.04 \&$ 0.12, respectively. Determine the transfer coefficients and stochiometric number for the reaction.

Solution: FOR ANODIC PROCESS

For large +ve η

$$
\begin{aligned}
& i \cong=i_{0} e^{\leftarrow \sqcap F / R T} ; \\
& \log _{i}^{\leftarrow}=\log i_{0}+\frac{\overleftarrow{\alpha} \eta F}{2.303 R T} \\
& \left(\frac{\partial \log _{i}^{\leftarrow}}{\partial \eta}\right)=\frac{\overleftarrow{\alpha} F}{2.303 R T}=\frac{1}{0.04}
\end{aligned}
$$

$$
\overleftarrow{\alpha}=\frac{2.303 R T}{F} \times \frac{1}{0.04}=1.48 \Leftrightarrow \frac{3}{2}
$$

SIMILARLY, FOR CATHODIC PROCESS:

$$
\begin{aligned}
& \frac{\partial \log _{i}}{\partial \eta}=\frac{\partial \log _{i}}{\partial \Delta \phi}=\frac{\vec{\alpha} F}{2.303 R T}=\frac{1}{0.12} \\
& \vec{\alpha}=\frac{2.303 R T}{F} \times \frac{1}{0.12}=0.49 \Rightarrow \frac{1}{2}
\end{aligned}
$$

\therefore Stoichiometric number $=\mathrm{n} /$ sum of transfer coefficients $=2 / 2=1$

NOTE: The proper slope is $\frac{\partial \log i}{\partial \Delta \phi}$ and not $\frac{\partial \Delta \phi}{\partial \log i}$

