## SP-1(A):TERM SYMBOLS

Addition of angular momentum vectors L and S of individual valence electron.

## LS (RS=Russel-Saunder coupling)

## Rules for determining ground state Term Symbol:

Term symbol $={ }^{(2 S+1)}{ }^{\text {LJ }}$
Where;
$\mathbf{S}=\Sigma \mathrm{m}_{\mathrm{s}}(\max )=$ Total spin -Maximum spin multiplicity- Hund's Rule
$\mathbf{L}=\Sigma m_{l}(\max )=$ Maximize the orbital angular momentum =Total orbital angular momentum.
Notation: L = 0, 1, 2, 3, 4, 5, $6 \ldots \ldots$
S, P, D, F, D, H ........
Calculate J
$\mathrm{J}=\mathrm{L}+\mathrm{S}, \mathrm{L}+\mathrm{S}-1, \ldots \ldots . .|\mathrm{L}-\mathrm{S}|=$ Total angular momentum quantum number
(i) $\mathrm{J}=$ Max if the shell is more than half filled and Min if less than half filled.
(ii) When the two states have same $L$ value, the one having greater $S$ value will have les's energy.
(iii)When the two states have same $S$ value, then the one having greater $L$ value will have less energy.
(iv)For orbital having less than half filled, the energy order is ${ }^{3} \mathrm{P}_{0}<{ }^{3} \mathrm{P}_{1}<{ }^{3} \mathrm{P}_{2}<{ }^{1} \mathrm{D}_{2}<{ }^{1} \mathrm{~S}_{0}$

## EXAMPLES

## Ground state symbols for some selected (configurations)atoms and ions

1. Carbon , $\mathrm{p}^{2}$


$$
\begin{aligned}
& \mathbf{L}=+1+0=1 ; \text { Term }=P \\
& \mathbf{S}=1 / 2+1 / 2=1 ; 2 S+1=3 \\
& \mathbf{J}=L+S ;(L+S)-1 ; \ldots \ldots . . . L-S \mid=2,1,0
\end{aligned}
$$

The configuration is less than half filled .Hence, $\mathbf{J}$ must be minimum.
$J=0$ must be the ground state.
The term symbol $={ }^{3} \mathrm{P}_{0}$
2. Nitrogen, $p^{3}$

$$
\begin{array}{r}
2 p^{3} \\
+1 \quad 0 \quad-1
\end{array}
$$


$\mathbf{L}=+10-1=0$
S = $1 / 2+1 / 2+1 / 2=3 / 2 ; 2 S+1=4$
$J=3 / 2,1 / 2$
Term $={ }^{4} S_{3 / 2}$
3. $\mathrm{Na}, \mathbf{3 s}{ }^{1}$

$$
\begin{aligned}
& \mathrm{Na}=[\mathrm{Ne}] 3 s^{1} \\
& \mathbf{L}=0 \\
& \mathbf{S}=1 / 2 ; \mathbf{2 S}+\mathbf{1}=2 \times 1 / 2+4=2^{0} \\
& \mathbf{J}=\mathrm{L}+\mathrm{S} \ldots \text { tol } \mathrm{L}-\mathrm{Sl}=1 / 2 \\
& \text { Term symbol for } \mathbf{N a}={ }^{2} \mathbf{S}_{1 / 2}
\end{aligned}
$$

4. $d^{1}$-States

$$
\mathrm{m}_{\mathrm{I}}=2 \quad 1 \quad 0 \quad-1 \quad-2
$$

| $\uparrow$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

$L=2$
$\mathbf{S}=1 / 2 ; \mathbf{2 S}+\mathbf{1}=2 \times 1 / 2+1=2$
$\mathbf{J}=L+S \ldots . .|\cdot L-S|=5 / 2,3 / 2,1 / 2$
Term symbol is ${ }^{2} \mathbf{D}_{1 / 2}$
5. $\mathrm{d}^{2}-$ States $\left(\mathrm{V}^{3+}\right)$

$$
m_{I}=2 \quad 1 \quad 0 \quad-1 \quad-2
$$


$\mathbf{L}=2+1=3$
$\mathbf{S}=1 / 2+1 / 2=1 ; \mathbf{2 S}+\mathbf{1}=2(1)+1=3$
$J=L+S ;(L+S)-1 ; \ldots \ldots \ldots . L-S=4,3,2$
$=L+S=2$ (Less than half filled)
Term symbol is ${ }^{3} \mathrm{~F}_{2}$
6. $d^{3}$ - States

$$
\begin{aligned}
& m_{\text {I }}=2 \quad 1 \quad 0 \quad-1 \quad-2 \\
& \mathbf{L}=2+1+0=3 \\
& S=1 / 2+1 / 2+1 / 2=3 / 2 ; \quad 2 S+1=2 \times 3 / 2+1 \Rightarrow 4 \\
& \mathbf{J}=L+S \ldots \ldots . . L-S=(3+3 / 2) \ldots \ldots \ldots .4 \text { to }(3-3 / 2)=9 / 2,7 / 2,5 / 2,3 / 2 .
\end{aligned}
$$

Term symbol for is ${ }^{4} F_{3 / 2}$
7. $d^{4}$ - States

$\mathbf{L}=2+1+0-1=2$
$S=1 / 2+1 / 2+1 / 2+1 / 2=2 ; 2 S+1=2 \times 2+1=5$
$J=L+S$ to $L-S=4,3$
Term symbol for is ${ }^{5} D_{0}$
8. $d^{5}$ - States

$$
m_{l}=2 \quad 1 \quad 0 \quad-1 \quad-2
$$

| $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ |
| :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& \mathbf{L}=2+1+0-1-2=0 \\
& \mathbf{S}=1 / 2+1 / 2+1 / 2+1 / 2+1 / 2=5 / 2 ; 2 S+1=2 \times 5 / 2+1=6 ; \\
& \mathbf{J}=(L+S),(L+S-1) \ldots \ldots \ldots . .(L-S)=5 / 2,3 / 2,1 / 2=5 / 2\left(J_{\max }, \text { Half filled- Highest }\right)
\end{aligned}
$$

Term symbol for $\mathbf{d}^{5}$ is ${ }^{6} \mathbf{S}_{5 / 2}$
9. $d^{8}$ - States

$$
\begin{aligned}
& m_{l}=2 \begin{array}{lllll}
2 & 1 & 0 & -1 & -2
\end{array} \\
& L=2+1=3 \\
& S=1 / 2+1 / 2=1 ; 2 S+1=2(1)+1=3 \\
& J=L+S \ldots L-S=3+1 \text { to } 3-1=4,3 \text {, } 2 \text { (more than half filled) } \\
& \text { Term symbol for }{ }^{3} \mathrm{~F}_{4}
\end{aligned}
$$

Similarly, $\mathbf{d}^{6}={ }^{5} D ; d^{7}={ }^{4} F ; d^{8}={ }^{3} F ; d^{9}={ }^{2} D$


The term arising from the electron interaction ( $\mathrm{J}+\mathrm{S}$ to $\mathrm{J}-\mathrm{S}$ ) in the $\mathrm{d}^{2}$ (Ground state- ${ }^{3} \mathrm{~F}_{2}$ ) ion.
The degeneracy of each term is indicated in parenthesis
Free ion terms for various $\mathrm{d}^{\mathrm{n}}(\mathrm{Oh})$ ions.

| $\mathbf{d}^{\mathbf{n}}$ | Terms |
| :--- | :--- |
| $d^{1} d^{9}$ | ${ }^{2} D$ |
| $d^{2} d^{8}$ | ${ }^{3} F^{3} P{ }^{1} G^{1} D^{1} S$ |
| $d^{3} d^{7}$ | ${ }^{4} F^{4} P^{2} H^{2} G^{2} F^{2} D^{2} D^{2} P$ |
| $d^{4} d^{6}$ | ${ }^{5} D^{3} H^{3} G^{3} F^{3} F^{3} D^{3} P^{1} \mid{ }^{1} G^{1} G^{1} F^{1} D^{1} D^{1} S^{1} S$ |
| $d^{5}$ | ${ }^{6} S^{4} G^{4} F^{4} D^{4} P^{2} I^{2} H^{2} G^{2} G^{2} F^{2} F^{2} D^{2} D^{2} P^{2} S$ |

Ground State term symbol for some atoms
$\mathbf{S}={ }^{3} \mathrm{P}_{2} ; \mathbf{C I}={ }^{2} \mathrm{P}_{3 / 2} ; \mathbf{S i}={ }^{3} \mathrm{P}_{0} ; \mathbf{T i}={ }^{3} \mathrm{~F}_{2} ; \mathbf{C r}={ }^{7} \mathrm{~S}_{3} ; \mathbf{N i}={ }^{3} \mathrm{~F}_{4}$

## ORGEL DIAGRAM

NB: All the d -d transitions are multiplicity and Laporte forbidden


LHS: $d^{9} \& d^{4}(O h) \& d^{1} d^{6}(T d$ Complexes give only one line corresponding to the transition.

$$
\mathrm{d}^{9}(\mathrm{Oh}) \mathrm{E}\left(\mathrm{t}_{2 g}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{3}\right) \longrightarrow \mathrm{T}_{2}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{5} \mathrm{e}_{\mathrm{g}}{ }^{4}\right)
$$

$$
\mathrm{e}_{9}{ }^{3} \text { can occur in two ways(E-doubly degenerate) as }
$$

| $d\left(x^{2}-y^{2}\right)$ | $d_{z}{ }^{2}$ |
| :---: | :---: |
| 2 | 1 |
| 1 | 2 |

$\mathrm{t}_{29}{ }^{5}$ in three ways ( $\mathrm{T}_{2}$ triply degenerate) as

| $d_{x y}$ | $d_{y z}$ | $d_{z x}$ |
| :--- | :--- | :--- |
| 2 | 1 | 1 |
| 1 | 2 | 1 |
| 1 | 1 | 2 |

RHS: Similarly,
$d^{9} \& d^{4}(T d) \& d^{1} d^{6}(O h)$ complexes give only one line corresponding to the transition.

$$
\mathrm{d}^{9}(\mathrm{Td}) \mathrm{T}_{2}\left({\mathrm{t} 2 \mathrm{~g}^{5}}^{5} \mathrm{e}_{9}{ }^{4}\right) \mathrm{E}\left(\mathrm{t}_{29}{ }^{6} \mathrm{e}_{9}{ }^{3}\right)
$$

NB: Td complexes (no centre of symmetry) give more intense bands than the Oh complexes.

${ }^{3} \mathbf{F}$ gets splitted but not ${ }^{3} \mathbf{P}$
Spectra of V(III)- $\mathbf{d}^{2}$ (Oh) -(Two lines)- RHS
$\mathrm{T}_{19}(\mathrm{~F})$ is the ground state.The possible transition are
$\mathrm{T}_{1(\mathrm{~g})} \mathrm{F} \longrightarrow{ }^{3} \mathrm{~T}_{2}(\mathrm{~F}) \quad\left(1700 \mathrm{~cm}^{-1}\right)$
$\mathrm{T}_{(9)} \mathrm{F} \longrightarrow{ }^{3} \mathrm{~T}_{1}(\mathrm{P})\left(2400 \mathrm{~cm}^{-1}\right)$
$\mathrm{T}_{19}(\mathrm{~F}) \longrightarrow \mathrm{A}_{2 g}$ (Two electron transition impossible, low intensity)
Spectra of Ni(II)-d ${ }^{8}$-(Oh)- (Three lines)- LHS :


