SP-1(A):TERM SYMBOLS

Addition of angular momentum vectors L and S of individual valence electron.

LS (RS=Russel-Saunder coupling)

Rules for determining ground state Term Symbol:

Term symbol = ^(2S+1)L_J

Where;

- $\mathbf{S} = \Sigma m_s (max) = Total spin Maximum spin multiplicity- Hund's Rule$
- $L = \Sigma m_I (max) = Maximize the orbital angular momentum = Total orbital angular momentum.$

Notation: L = 0, 1, 2, 3, 4, 5, 6

S, P, D, F, D, H

Calculate J

- J = L+S, L+S-1, |L-S| = Total angular momentum quantum number
- (i) J = Max if the shell is more than half filled and Min if less than half filled.
- (ii) When the two states have same L value, the one having greater S value will have less energy.
- (iii)When the two states have same S value, then the one having greater L value will have less energy.
- (iv)For orbital having less than half filled , the energy order is ${}^3P_0 < {}^3P_1 < {}^3P_2 < {}^1D_2 < {}^1S_0$

EXAMPLES

Ground state symbols for some selected (configurations)atoms and ions

1. Carbon, p^2

15-(SP-1)A-TERM SYMBOLS; Prof.Dr.A.DAYALAN, Former Prof & Head, Ch-94

- $S = \frac{1}{2} + \frac{1}{2} = 1$; 2S+1=3
- $J = L+S; (L+S)-1; \dots \dots |L-S| = 2, 1, 0$

The configuration is less than half filled .Hence, **J** must be **minimum**.

J = 0 must be the ground state.

The term symbol = ${}^{3}P_{0}$

2. Nitrogen, p³

 $S = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}; 2S + 1 = 4$

J = 3/2, $\frac{1}{2}$

- Term = ${}^{4}S_{3/2}$
- 3. Na, 3s¹

 $Na = [Ne] 3s^{1}$

- **L**=0
- p.A.DAVALAT $S = \frac{1}{2}$; 2S+1 = 2 x $\frac{1}{2}$ + $J = L + S \dots$ to $L - S = \frac{1}{2}$

Term symbol for $Na = {}^2S_{\frac{1}{2}}$

4. d¹ - States

 $m_{1} = 2$ 1 0 -2 -1

L = 2 $S = \frac{1}{2}$; 2S+1 = 2 x $\frac{1}{2}$ + 1 = 2 $J = L+S \dots J.L-SI = 5/2, 3/2, 1/2$ Term symbol is ²D _{1/2}

15-(SP-1)A-TERM SYMBOLS; Prof.Dr.A.DAYALAN, Former Prof & Head, Ch-94

Term symbol for **d**⁵ is ⁶**S**_{5/2}

9. d⁸ - States

L = 2 + 1 = 3 $S = \frac{1}{2} + \frac{1}{2} = 1$; 2S+1 = 2(1) + 1 = 3 $J = L+S \dots L-S = 3+1$ to 3-1 = 4, 3, 2 (more than half filled)

Term symbol for ³F₄

Similarly, $d^6 = {}^5D$; $d^7 = {}^4F$; $d^8 = {}^3F$; $d^9 = {}^2D$

The term arising from the electron interaction (J+S to J-S) in the d^2 (Ground state- ${}^{3}F_2$) ion.

The degeneracy of each term is indicated in parenthesis

Free ion terms for various dⁿ (Oh) ions.

d ⁿ	Terms
d ¹ d ⁹	² D
d² d ⁸	³ F ³ P ¹ G ¹ D ¹ S
d ³ d ⁷	⁴ F ⁴ P ² H ² G ² F ² D ² D ² P
d ⁴ d ⁶	⁵ D ³ H ³ G ³ F ³ F ³ D ³ P ¹ I ¹ G ¹ G ¹ F ¹ D ¹ D ¹ S ¹ S
d ⁵	⁶ S ⁴ G ⁴ F ⁴ D ⁴ P ² I ² H ² G ² G ² F ² F ² D ² D ² P ² S

15-(SP-1)A-TERM SYMBOLS; Prof.Dr.A.DAYALAN, Former Prof & Head, Ch-94

Ground State term symbol for some atoms

 $\textbf{S}={}^{3}P_{2} \hspace{0.1in} ; \hspace{0.1in} \textbf{Cl}={}^{2}P_{3/2} \hspace{0.1in} ; \hspace{0.1in} \textbf{Si}={}^{3}P_{0} \hspace{0.1in} ; \hspace{0.1in} \textbf{Ti}={}^{3}F_{2} \hspace{0.1in} ; \hspace{0.1in} \textbf{Cr}={}^{7}S_{3} \hspace{0.1in} ; \hspace{0.1in} \textbf{Ni}={}^{3}F_{4}$

ORGEL DIAGRAM

NB: All the d-d transitions are multiplicity and Laporte forbidden

RHS: Similarly,

 $d^9 \& d^4$ (Td) $\& d^1 d^6$ (Oh) complexes give **only one line** corresponding to the transition.

 d^9 (Td) T₂ ($t_{2g^5} e_g^4$) \longrightarrow E ($t_{2g^6} e_g^3$)

NB: Td complexes (no centre of symmetry) give more intense bands than the Oh complexes.

Dq 0 Dq

³F gets splitted but not ³P

Spectra of V(III)- d² (Oh) –(Two lines)- RHS

 $T_{1g}(F)$ is the ground state. The possible transition are

 $T_{1(g)}F \longrightarrow {}^{3}T_{2}(F) (1700 \text{ cm}^{-1})$

 $T_{(g)}F \longrightarrow {}^{3}T_{1}(P)$ (2400 cm⁻¹)

(Two electron transition impossible, low intensity) $T_{1g}(F) \longrightarrow A_2g$

Spectra of Ni(II)-d⁸ -(Oh)- (Three lines)- LHS :

15-(SP-1)A-TERM SYMBOLS; Prof.Dr.A.DAYALAN, Former Prof & Head, Ch-94

7

	Ligand		
	H ₂ O	NH ₃	
³ A₂g → T₂g	8500 cm ⁻¹	10750 cm ⁻¹	
³ A _{2g} → T _{1g} (F)	15400	17500	
³ A _{2g} → T _{1g} (P)	26000	28200	
	Weak field ligand	Strong field ligand	
	Low Dq	High Dq	
	Low energy	High energy	
Possible electronic arrangement for $t_{2g}^2 \longrightarrow t_{2g}^1 eg^1$			
But, the transition			
xy¹ xz¹ yz →	xy zx² yz	*	
T _{2g} (triplet)	A _{2g} (singlet)	and a second	
is multiplicity forbidden and	d may take place with low	intensity.	
1 h			
0A			
A a b			
- O't."			
or Otor			

*