PC-2(A): ELECTROCHEMISTRY-1 LESSON-I

Introduction

- 1. ELECTROCHEMISTRY- Subject of Chemistry involving electricity
- 2. ELECTROCHEMICAL REACTIONS- Chemical reactions related to electricity
- 3. ELECTRODE It is a system in which the element is present in two different

oxidation states- Electrode reaction - Oxidation or Reduction

a) Cu | Cu²⁺(aq.) ; Cu : 0 & +2 oxidation states

b) $Zn \mid Zn^{2+}(aq.)$; **Zn : 0 & +2** oxidation states

c) Chlorine electrode

Pt, Cl₂, Cl⁻, Here Pt acts as an inert electrode.

d) Pt, Mn²⁺, MnO₄⁻ - Manganous-permanganate electrode

An electrode will have two possible tendencies namely i) Oxidation; ii) Reduction

Displacement reactions

 $Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$; Hence, reactivity: Zn > Cu

Reactivity order: Na > Mg > Zn > Cu > Agfor metals

F > CI > Br > Ifor *non-metals*

4. CELL-System in which an electrochemical reaction occurs-similar to system in thermodynamics

A cell is a combination of two electrodes.

(i) Electrolytic cell - Electrical — Chemical

Anode - Positive; Cathode- Negative

(ii) Galvanic (Voltaic) cell - Chemical ---- Electrical

Anode-Negative; Cathode- Positive

But, in both cases **anode**= oxidation; **cathode** = reduction

5. DANIEL CELL : Zn / ZnSO_{4(aq)} // CuSO_{4 (aq)} / Cu ; $E^{o}_{cell} = 1.1V$.

Zinc dipped into a solution of ZnSO₄ and copper dipped into a solution of CuSO₄. The two electrodes are connected internally by a salt bridge (solution of

KNO3 or KCI, they have almost same mobility & transport number) and externally by a metallic wire.

Zinc electrode,

Zn \longrightarrow Zn²⁺ +2e (*Oxidation*) Anode -ve

Copper electrode,

 $Cu^{2+} + 2e \longrightarrow Cu (Reduction)$ Cathode +ve

Zn leaves as Zn²⁺. Hence Zn carries a negative charge. Electrons travel towards copper electrode which is positively charged because of the accumulation of Cu²⁺ from the solution.

The weight of Zn will decrease while the weight of Cu will increase.

Electrons migrate through the metallic wire to copper electrode where Cu²⁺ accepts the electrons and gets deposited. Hence, electron flow is from zinc to copper & current flow is from copper to zinc. lons in the salt bridge migrate suitably to maintain electro neutrality. There is a migration of 2Cl⁻ ions to the zinc solution while 2K⁺ ions migrate to the copper sulphate solution for every Zn²⁺ formed and Cu²⁺ discharged.

- 6. POTENTIAL (Electrode of an electrode with reference to a standard electrode, SHE)-POTENTIAL DIFFERENCE, emf (Cell) - Difference in potential of the electrode; Unit is volt for both
- 7. ELECTRODE Standard electrode (1 atm, 298K, a = 1)
- 8. ELECTRODE & Standard electrode POTENTIAL (Reduction potential & Oxidation potentials) - SRP - Single electrode potential can not be determined
- 9. STANDARD CELL Definition-NB, Ecell = E^ocell does not mean Std. cell

10. REFERENCE ELECTRODES (Primary & Secondary)

(i) SHE (*Primary* reference electrode); $E^{\circ} = 0 V$

SHE = Pt , H₂ (1 atm , 298K) , H⁺(1M) – **Fig**

Difficulties which may be involved in the construction of SHE

- Pressure of H₂ should be maintained exactly at 1 atm.
- When a gas is bubbled into a solution the solution will undergo evaporation leading to increase in concentration.

The electrode surface should be completely coated with Pt.

(ii) SCE (Secondary reference electrode)

SCE = Hg, Hg₂Cl_{2 (s)}, Cl⁻ (satd) ; E° = 0.2422 V (w.r.t SHE)

11.TYPICAL SRP DATA

Electrode	Std. Potential, V
(i) Li+/Li	-3.045
(ii) Na+/Na	-2.714
(iii) Mg ²⁺ / Mg	- 2.37
(iv) Zn ²⁺ / Zn	-0.76
(v) Fe ²⁺ / Fe	- 0.44
(vi) I⁻ , AgI , Ag	-0.151
(vii) SHE	0.00
(viii) Br⁻ , AgBr , Ag	0.071
(ix)Cu ²⁺ / Cu ⁺	0.153
(x) Cl ⁻ , AgCl , Ag 💦 🚬	0.222
(xi) NCE	0.2676 ; (SCE = 0.2422
(xii) Cu ²⁺ / Cu	0.34
(xiii) Cu+ / Cu	0.52
(xiv) Pt , Q , QH₂ , H⁺	0.6996
(xv) Pt ⁺ , Fe ²⁺ , Fe ³⁺	0.77
(xvi) Ag ⁺ /Ag	0.80
(xvii) Pt , Cr ₂ O ₇ ²⁻ , Cr ³⁺ , H	l+ 1.33
(xviii) Pt , Cl ₂ / Cl ⁻	1.36
(xix) Pt, MnO4 ⁻ , H ⁺ , Mn ²⁺	1.51

Significance of SRP (Applications & Electro Chemical series):

(i) The more reactive metal will undergo oxidation while the other metal electrode will undergo reduction.

- (ii) Prediction of anode & cathode
- (iii)Determination of cell emf

3

V)

(v) Electrode with greater SRP will undergo reduction.

12. ANODIC & CATHODIC REACTIONS of an electrode – CELL REACTION

to cell formations.

13. REVERSIBLE Electrodes and Cells-Concepts

14. RELATION BETWEEN EMF & ΔG – Derivation – Applications

w = Force x distance = ΔG

= EMF x Charge = = E x Q

= E x nF; (F = $6.023 \times 10^{23} \times 1.6 \times 10^{-19} = 96485C$)

 $\Delta G = -E \ x \ nF = - \ nFE \ ; \quad \Delta G^{o} = - \ nFE^{o}$

15. CONVENTIONS Regarding SIGN OF EMF : + ve spontaneous

16.EMF & SPONTANEITY of electrochemical reactions-PROBLEMS based on

 $E^{o}_{cell} \& \Delta G$

17.NERNST EQUATION-Derivation - Application to Electrode potential & Cell emf

18. TYPES OF ELECTRODE - Try Electrode reaction , Electrode potential- Nernst Equation

- (i) Metal- Metal ion electrode
- (ii) Amalgam electrode
- (iii) Gas electrode
- (iv) Metal insoluble salt electrode
- (v) Oxidation-reduction electrode
- : Cu/Cu²⁺
- : Na-Hg / Na⁺
- : Pt , Cl₂ , Cl⁻(aq)
- : $\textbf{AgCl}_{(s)}$, $\textbf{Cl}^{\text{-}}_{(aq)}$, Ag

: Pt , MnO₄-(aq) , Mn²⁺(aq) , H⁺(aq)

(NB: All electrodes are red-ox systems)

PROBLEMS

LESSION-1

- Calculate the reduction potential of hydrogen electrode at a
 (i) Pressure of 0.5 atm (ii) pH = 2 ; (iii) pH = 10
- Calculate the emf of a Daniel cell at 298 K when the concentration of Cu²⁺ and Zn²⁺ are 0.1 M and 0.01M, respectively.
- 3. Write the cathodic reaction at the electrode : $I^{\scriptscriptstyle 2}$, AgI , Ag
- 4. Calculate the cell emf when the SCE is combined with standard copper electrode. Write the electrode reaction, the overall cell reaction and predict anode & cathode and their algebraic sign.
- 5. Write the cathodic reaction at the electrode Pt , Q , QH₂ , H⁺ ; $E^{\circ} = 0.6996V$
- 6. In an experiment to determine the SRP of an electrode using saturated calomel electrode as reference electrode, the cell potential was found to be 0.097V. Evaluate the SRP of the electrode.
- 7. Write the anodic reaction at the electrode Pt, $MnO_{4^{-}}$, H^{+} , Mn^{2+} .
- 8. Calculate the EMF of the cell formed using the electrodes Pt , Q , QH_2 , H⁺ (0.01M) (SRP = 0.6996V) and Cl⁻ (0.1), AgCl , Ag (SRP= 0.222 V)
- 9. Construct the cell in which the following overall reaction occurs. Determine its E^o_{cell} : Cl₂ + 2l → l₂ + 2Cl⁻
- **10.**Calculate the RP of Ag⁺ / Ag at the concentration of X⁻ equal to the solubility of AgCl , AgBr , Agl (K_{sp} = 1.8×10^{-10} ; 5×10^{-13} ; 8.3×10^{-17} , respectively)
- 11.Formulate the cell corresponding to the following cell reaction. Determine its E^o_{cell} & ΔG^o: Cd + 2Ag⁺ → 2Ag + Cd²⁺
- 12.Calculate the SRP of Cu⁺ / Cu electrode given the SRP of the electrodes Cu^{2+} / Cu⁺ , E^o = 0.153 & Cu²⁺ / Cu ; E^o = 0.34 V .
- 13.Calculate the RP of the electrode at pH=3 Pt , MnO4⁻ (0.1M), H⁺ , Mn²⁺ (0.01M) if its SRP = 1.51V
- **14.** Formulate a red-ox electrode involving (i) $Cr_2O_7^{2-}$ (ii) IO_3^{-} in acid medium.

5