QUANTUM CHEMISTRY

Dr. A. DAYALAN, Former Professor \& Head, Dept. of Chemistry, LOYOLA COLLEGE (Autonomous), Chennai - 34

QC-3.1: PARTICLE IN A ONE DIMENSIONAL (1D) BOX

$>\mathrm{H} \psi=\mathrm{E} \psi$
$>\left\{-\frac{h^{2}}{8 \pi^{2} \mathrm{~m}} \nabla^{2}+\mathrm{V}\right\} \psi=\mathrm{E} \psi$
For a 1D box, $\nabla^{2}=\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}$
>Schrödinger equation :

The particle is not at rest \& has only KE
$>$ Let, $\mathrm{k}^{2}=\stackrel{8 \pi^{2} \mathrm{mE}}{------} ; \mathrm{h}^{2}$ Standard differential equation of the form $\frac{\mathrm{d}^{2} \psi}{-----\mathrm{k}^{2} \psi=0} \mathrm{dx}^{2}$
$>$ Standard solution : $\psi=\mathrm{A} \sin \mathrm{kx}+\mathrm{i}$ B coskx

$$
\mathrm{d}^{2}
$$

Check: ----- $\left.\underset{\mathrm{dx}^{2}}{(A \sin k x}+\mathrm{i} B \operatorname{coskx}\right)=(-\mathrm{A} \sin \mathrm{kx}-\mathrm{i} B \operatorname{coskx}) \mathrm{k}^{2}=-\mathrm{k}^{2} \psi$
$>$ Apply the first boundary condition $(\psi=0$ at $\mathrm{x}=0) ; \mathbf{B}=\mathbf{0}$
Therefore, $\psi=$ Asin kx
$>$ Apply the second boundary condition ($\psi=0$ at $\mathrm{x}=1$)
$>\psi=\mathrm{A} \sin \mathrm{kl}=0$; A cannot be zero. Therefore $\mathrm{kl}=\mathrm{n} \pi$
$>\mathrm{k}=\stackrel{\text { nл }}{\mathrm{n}} \mathrm{-}$
$>\frac{n^{2} \pi^{2}}{-----} l^{2}=--\cdots \pi^{2} \mathrm{mE}$
Therefore, $\mathbf{E}_{\mathrm{n}}=\frac{\mathbf{n}^{\mathbf{2}} \mathbf{h}^{\mathbf{2}}}{\mathbf{- - - - -} \mathbf{m l}^{2}}$
$>$ Hence, $\psi=\mathrm{A} \sin (\mathbf{n} \pi / \mathbf{l}) \mathbf{x}$
> Apply the normalization condition to get A

$$
\begin{aligned}
& \int \psi * \psi d i ̈=1 \text { for } 0 \leq x \leq 1 \\
& \text { i.e., } \int \mathrm{A}^{2} \sin ^{2}(\mathrm{n} \pi / 1) \mathrm{xdx}=1 \quad\left\{\mathrm{NB}: \cos 2 \mathrm{x}=\cos ^{2} \mathrm{x}-\boldsymbol{\operatorname { s i n }}^{2} \mathrm{x}=\mathbf{2} \cos ^{2} \mathrm{x}-\mathbf{1}=\mathbf{1 - 2} \sin ^{2} \mathrm{x}\right\} \\
& \text { i.e., } \mathrm{A}^{2} / 2 \int\{1-\cos 2(n \pi / 1) \mathrm{x}\} \mathrm{dx}=1 \text {; for } 0 \leq \mathrm{x} \leq 1 \\
& A=(2 / 1)^{1 / 2} \\
& \psi_{\mathrm{n}}=(2 / \mathrm{l})^{1 / 2} \operatorname{Sin}(\mathrm{n} \pi / \mathrm{l}) \mathrm{x} \\
& >\mathbf{E}_{\mathrm{n}}=\frac{\mathbf{n}^{2} \mathbf{h}^{2}}{-\mathrm{Bml}^{2}} \quad ; \mathrm{ZPE}=\stackrel{\mathbf{h}^{2}}{\mathbf{8 m l}}{ }^{2} \text { for } \mathrm{n}=1 \\
& >\Delta E_{n}=\frac{h^{2}}{8 m^{2}}-\left(n_{2}^{2}-n_{1}^{2}\right)=\frac{h^{-}}{\lambda}=h^{-}
\end{aligned}
$$

Discussions:

\Rightarrow The value of " \mathbf{n} " cannot be zero as it will mean the total energy; E is zero which is not possible.
\Rightarrow Hence, $\mathbf{Z P E}, \mathbf{E}_{\mathbf{1}}=\frac{\mathbf{h}^{\mathbf{2}}}{\mathbf{- - - - - -}}$; for $\mathbf{n}=\mathbf{1}$ (maximum degeneracy is one-non degenerate)
\Rightarrow The integral values of $\mathrm{n}(1,2,3, \ldots)$ characterizes the energy levels, $\mathrm{E}_{\mathrm{n}}\left(\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}\right.$,
$\ldots \ldots)$ and the wave functions, $\psi_{\mathrm{n}}\left(\psi_{1}, \psi_{2}, \psi_{3}\right.$, \qquad
\Rightarrow Generate the wave functions, ψ_{n} and energy levels, E_{n} for $\mathrm{n}=1,2,3,4,5,6$
\Rightarrow Draw the energy levels and the wave functions for $\mathrm{n}=1,2,3,4,5,6$.
\Rightarrow Predict the values of n for $\pi \rightarrow \mathrm{J}^{*}$ transitions in each case.
\Rightarrow The energy levels are not equally spaced and the wave functions will have nodes and anti nodes depending on n values.
\Rightarrow Double bonds n. The л \rightarrow л* transition is $\mathrm{n} \rightarrow \mathrm{n}+1$. The number
 of MO's $=2 n$, of which 50% levels viz., n are occupied.
\Rightarrow Compare the particle (atom or a molecule, which can have $\mathbf{n}=\mathbf{0}$ according to statistical thermodynamics) in a vessel with electron as a particle in a molecule, n cannot be zero.
\Rightarrow Mode of orbital overlap in conjugated diene like ETHENE ; $\mathbf{E}_{\mathrm{n}} \& \Psi_{\mathrm{n}}(\mathbf{n}=1,2)$ $\boldsymbol{\pi} \longrightarrow \pi^{*}(\mathbf{n}: \mathbf{1} \longrightarrow \mathbf{2})$
\Rightarrow Mode of orbital overlap in conjugated diene like 1, 3-BUTADIENE; $\mathbf{E}_{\mathbf{n}} \boldsymbol{\&} \Psi_{\mathbf{n}}$ ($\mathrm{n}=\mathbf{1 , 2}, \mathbf{3}, 4$)
Here, transition: $\pi \rightarrow \pi^{*} ; \quad(\mathbf{n}: \mathbf{2} \longrightarrow 3)$

* Similarly, construct energy level diagram for 1, 3, 5-Hexatriene
* Compare the energy levels of ethylene, butadiene (lie at low levels due to increase in l)

n	1	λ	v		$\mathbf{E}=\mathrm{n}^{2} \mathrm{~h}^{2} / 8 \mathrm{ml}{ }^{2}$	$\Psi_{\mathrm{n}}=(2 / \mathrm{l})^{1 / 2} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{l})$
			c / λ	$\mathbf{c} / \mathbf{l}=\mathrm{k}$		
1	1/2入	21	$\mathrm{c} / 21$	1/2k	$\mathrm{h}^{2} / 8 \mathrm{ml}^{2}$	$(2 / \mathrm{l})^{1 / 2} \sin (\pi \mathrm{x} / \mathrm{l})$
2	λ	1	c/l	k	$4 \mathrm{~h}^{2} / 8 \mathrm{ml}{ }^{2}$	$(2 / 1)^{1 / 2} \sin (2 \pi x / l)$
3	$11 / 2 \lambda$	2/31	$1^{1 / 21}$	11/2k	$9 h^{2} / 8 m^{2}$	$(2 / 1)^{1 / 2} \sin (3 \pi \mathrm{x} / \mathrm{l})$
4	2λ	1/21	21	2k	$16 \mathrm{~h}^{2} / 8 \mathrm{ml}{ }^{2}$	$(2 / 1)^{1 / 2} \sin (4 \pi x / l)$

Application to different conjugated olefins:

* Mass of the electron, $\mathbf{m}_{\mathbf{e}}=9.11 \times 10^{-81} \mathrm{~kg} ; \mathbf{h}=6.625 \times 10^{-34} \mathrm{Js} ; \mathbf{k}_{\mathbf{b}}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
* Ethylene: $1=1.33 \AA=1.33 \times 10^{-10} \mathrm{~m}\left(\lambda_{\max }=19.75 \mathrm{~nm}\right) ;$ NB: $1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}$.
\& 1, 3-Butadiene: $1=2(1.33)+1(1.54)=4.2 \AA=4.2 \times 10^{-10} \mathrm{~m}\left(\boldsymbol{\lambda}_{\max }=\mathbf{1 1 7 n m}\right)$.
* 1, 3, 5-Hexatriene (Three double bonds): $1=3(1.33)+2(1.54)=7.07 \AA ́=7.07 \times 10^{-10}$ $\mathrm{m}\left(\boldsymbol{\lambda}_{\text {max }}=\mathbf{2 3 7 . 6} \mathbf{~ n m}\right)$. Transition $3 \rightarrow 4$ (6 MOs)
* A conjugated olefin with 12 double bonds (Box length, $1=12$ double bond distances +11 single bond distances $=12(1.33)+11(1.54) \AA$) $=32.9 \AA=32.9 \times 10^{-10} \mathrm{~m}$; ($\lambda_{\max }=\mathbf{1 4 2 7 n m}$). Transition $\mathrm{n}: 12 \rightarrow 13$ (12 MOs)
* The absorption increases to visible region making the compound colored.
* There could be an outer distribution of electron density little away from the extreme carbons-Tunneling effect.
* The bond angles are 120°. Hence, the zig-zag orientation and further twisting due to C-C free rotations (conformations) will make the length of the molecule shorter.

