QUANTUM CHEMISTRY

Dr. A. DAYALAN, Former Professor & Head, Dept. of Chemistry, LOYOLA COLLEGE (Autonomous), Chennai – 34

QC-3.1: PARTICLE IN A ONE DIMENSIONAL (1D) BOX

1

$$k = \frac{n\pi}{1}$$

$$k = \frac{n^{2}\pi^{2}}{1^{2}} = \frac{8\pi^{2}mE}{h^{2}}$$
Therefore, $E_{n} = \frac{n^{2}h^{2}}{8ml^{2}}$

$$hence, \psi = Asin (n\pi / 1)x$$

$$hence, \psi = Asin (n\pi / 1)x dx = 1 \quad \{NB : \cos 2x = \cos^{2}x - \sin^{2}x = 2\cos^{2}x - 1 = 1 - 2\sin^{2}x \}$$

$$i.e., \int A^{2}sin^{2} (n\pi / 1)x dx = 1 \quad \{NB : \cos 2x = \cos^{2}x - \sin^{2}x = 2\cos^{2}x - 1 = 1 - 2\sin^{2}x \}$$

$$i.e., A^{2} / 2 \int \{1 - \cos 2(n\pi / 1)x\} dx = 1 \quad \{NB : \cos 2x = \cos^{2}x - \sin^{2}x = 2\cos^{2}x - 1 = 1 - 2\sin^{2}x \}$$

$$i.e., A^{2} / 2 \int \{1 - \cos 2(n\pi / 1)x\} dx = 1 \quad \{NB : \cos 2x = \cos^{2}x - \sin^{2}x = 2\cos^{2}x - 1 = 1 - 2\sin^{2}x \}$$

$$hence, \psi = Asin (n\pi / 1)x$$

- **Discussions**:
 - \Rightarrow The value of "**n**" cannot be zero as it will mean the total energy; E is zero which is not possible.

$$\Rightarrow \text{ Hence, ZPE, } \mathbf{E}_1 = \frac{\mathbf{h}^2}{-\cdots--} \quad \text{; for } \mathbf{n} = \mathbf{1}(\text{maximum degeneracy is one-non degenerate})$$

- $\Rightarrow The integral values of n (1, 2, 3, ...) characterizes the energy levels , E_n (E_1, E_2, E_3,) and the wave functions, <math>\psi_n (\psi_1, \psi_2, \psi_3,)$.
- \Rightarrow Generate the wave functions, ψ_n and energy levels, E_n for n=1, 2 , 3 , 4 , 5, 6
- \Rightarrow Draw the energy levels and the wave functions for n=1, 2, 3, 4, 5, 6.
- \Rightarrow Predict the values of n for $\pi \rightarrow \pi^*$ transitions in each case.

- ⇒ The energy levels are not equally spaced and the wave functions will have nodes and anti nodes depending on n values.
- ⇒ Double bonds n. The $\pi \to \pi^*$ transition is n → n+1.The number of MO's = 2n, of which 50% levels viz., n are occupied.

- \Rightarrow Compare the particle (atom or a molecule, which can have $\mathbf{n} = \mathbf{0}$ according to **statistical thermodynamics**) in a vessel with electron as a particle in a molecule, n cannot be zero.
- $\Rightarrow \text{ Mode of orbital overlap in conjugated diene like ETHENE ; E_n & \Psi_n (n = 1, 2)}$ $\pi \longrightarrow \pi^* (n : 1 \longrightarrow 2)$
- ⇒ Mode of orbital overlap in conjugated diene like 1, 3-BUTADIENE; $E_n \& \Psi_n$ (n = 1, 2, 3, 4)

Here, transition: $\pi \rightarrow \pi^*$; (**n**:2 –

- Similarly, construct energy level diagram for 1, 3, 5-Hexatriene
- Compare the energy levels of ethylene, butadiene (lie at low levels due to increase in 1)

→3 ﴾

Fig: $\Psi \And \Psi^{z}$ for 1D box for different n values

n	1	λ	v			
			c/λ	c/l = k	$\mathbf{E}=n^2h^2/8ml^2$	$\Psi_{n}=(2/l)^{\frac{1}{2}}\sin(n\pi x/l)$
1	1⁄2λ	21	c/21	1⁄2k	$h^2/8ml^2$	$(2/l)^{\frac{1}{2}}\sin(\pi x/l)$
2	λ	1	c/l	k	$4h^{2}/8ml^{2}$	$(2/l)^{\frac{1}{2}}\sin(2\pi x/l)$
3	11⁄2λ	²⁄3l	11⁄2l	11⁄2k	9h ² /8ml ²	$(2/l)^{1/2}\sin(3\pi x/l)$
4	2λ	¹ /2l	21	2k	$16h^2/8ml^2$	$(2/1)^{\frac{1}{2}}\sin(4\pi x/1)$

Application to different conjugated olefins:

- Mass of the electron, $\mathbf{m}_{e} = 9.11 \times 10^{-31} \text{ kg}$; $\mathbf{h} = 6.625 \times 10^{-34} \text{ Js}$; $\mathbf{k}_{b} = 1.38 \times 10^{-23} \text{ JK}^{-1}$
- **Characteristics:** Ethylene: $1 = 1.33 \text{ Å} = 1.33 \text{ x} 10^{10} \text{ m} (\lambda_{max} = 19.75 \text{ nm}); \text{ NB:} 1 \text{ nm} = 1 \text{ x} 10^{-9} \text{ m}.$
- ★ 1, 3-Butadiene: $l = 2(1.33) + 1(1.54) = 4.2 \text{Å} = 4.2 \text{x} 10^{-10} \text{ m} (\lambda_{\text{max}} = 117 \text{ nm}).$
- ★ 1, 3, 5-Hexatriene (*Three double bonds*): 1 = 3(1.33) + 2(1.54) = 7.07Å = 7.07x10⁻¹⁰
 m (λ_{max} = 237.6 nm). *Transition* 3 → 4 (6 MOs)
- ★ A conjugated olefin with *12 double bonds* (Box length, l = 12 double bond distances + 11 single bond distances = 12(1.33) + 11(1.54) Å) = 32.9 Å = 32.9 x 10⁻¹⁰m; ($\lambda_{max} = 1427$ nm). *Transition* n : 12 → 13 (12 MOs)
- * The absorption increases to visible region making the compound *colored*.
- There could be an outer distribution of electron density little away from the extreme carbons-*Tunneling effect*.
- The bond angles are 120°. Hence, the *zig-zag orientation* and further twisting due to C-C free rotations (*conformations*) will make the length of the molecule shorter.