2.2-POSTULATES OF QUANTUM MECHANICS

Classical mechanics-Energy is continuous

Quantum Mechanics- Energy is discontinuous, quantized (fixed).

1. POSTULATES OF QUANTUM MECHANICS

(i) **Postulate-1** (*Wave functions*)

Every system can be described by a well behaved wave function, $\boldsymbol{\Psi}$

- Properties of well-behaved wave functions continuous, single valued, disappear at extreme limit, normalized and orthogonal.
- > Condition for normalization : $\int \psi_{\iota} * \psi_{\iota} d\dot{\iota} = 1$
- Condition for orthogonality : $\int \psi_1 * \psi_i d\hat{\iota} = 0$
- (ii) **Postulate-2** (Operators)
- Each observable has a characteristic operator.
- Concept of operators mathematical symbol.
 Linear operators: (Examples: Differential and integral operators)

Non-linear operators :(*Examples*: logarithmic; Square root)

Commutative (Commuting operators)(AB ψ = BA ψ): Position and momentum operators do not commute(*Uncertainty principle*)

3D Laplacian operator)
$$\nabla^2 = \frac{d^2}{dx^2} + \frac{d^2}{dy^2} + \frac{d^2}{dz^2}$$

Hence, 1D Laplacian operator is $\begin{array}{ccc} d^2 & d^2 & d^2 \\ -- & or & -- \\ dx^2 & dy^2 & dz^2 \end{array}$

A 2D Laplacian operator in x and y is $\nabla^2 = \frac{d^2}{dx^2} + \frac{d^2}{dy^2}$

Direction of operation-operating from left to right.

> Total energy operator(Hamiltonian operator), H : $(-h^2 / 8 \pi^2 m) \nabla^2 + V$

(iii) Postulate-3 (Schrodinger Equation)

All systems satisfy an equation of the form $H\Psi = E\Psi$ called *Schrodinger Equation*

(iv) Postulate-4 (Eigen equation)

The observable of a system is given by the *Eigen equation:* $A\psi = a\psi$; Where , A *is Eigen operator,* ψ *is Eigen function. and a* is Eigen *value.*

NB: Schrodinger Equation is a special form of the Eigen equation, $A\psi = a\psi$

dⁿ NB: (i) ae^{ax} will be an Eigen function for --dxⁿ d^2 (ii) "Asinax & Acosax" will be Eigen functions for d> dⁿ (iii) "Asinax & Acosax" will not be Eigen functions for -- if n is odd dxⁿ (v) Postulate-5 (Average value or Expectation value) The average or expectation value is given by the integral ∫ψ∗Ηψ dΐ <E> = [ψ∗ψ ďΐ Where $\psi *$ is the complex conjugate of ψ