PC-1(A): PHASE EQULIBRIUM: SYNOPSIS

1 PHASE (P)-Physically distinct and mechanically separable

2 COMPONENTS (C)

Number of chemically independent chemical constituents by means of which the composition of each phase can be expressed. It is the number of **chemical constituents** –number of **relationships** among them

Ar = One component

Ar + Ne = Two components

 $N_2+H_2+NH_3 =$ Three components

 $N_2+H_2+NH_3$ (773K) = Two components

A+B+C = Three components

A+B+C ; **B** =**C** = Two components

 $N_2+H_2 \longrightarrow NH_3 = Two components (3-1=2); one chemical relation$

CaCO₃ + CaO + CO₂ at room temperature, three components

 $CaCO_3 + CaO + CO_2$ at high temperature, two components

 $CaCO_3 \rightarrow + CaO + CO_2$ at high temperature, two components (3-1 =2)

- **3 DEGREES OF FREEDOM (F):** It is the minimum number of variables like *p*,*T* & *concentration* that must be specified to understand the system completely.
- 4 GIBB'S PHASE RULE, F = C-P+2

5 DERIVATION OF THE PHASE RULE.

All components are distributed in all the phases

Equations:-

 $\mu_1(1) = \mu_2(1) = \mu_3(1) = \mu_4(1) \dots = \mu_P(1)$ for the first component

(P-1) equations for each component in a phase

Total equations = C(P-1) for all the components in all the phases

Variables:-

Concentration variable for each phase = C-1

Total number of concentration variable for all the phases = P(C-1)

The physical variables = 2 (p & T)

Total number of variables for the system = P(C-1) + 2

 \mathbf{F} = "No of Variables-No of Equations" = P(C-1) + 2 - C(P-1) = C-P+2

F = **C**-**P** +1 (*Reduced Phase rule* for two component system)

F = **C**-**P** (*Reduced Phase rule* for three component system)

6 CLAPEYRON EQUATION

dG = Vdp - SdT = 0 for eq process

 $dp/dT = \Delta S / \Delta V = \Delta H / T \Delta V$ for any system.

Application to ice water eqilibrium

 $\Delta \mathbf{V} = \mathbf{V}_{water} - \mathbf{V}_{ice} = -ve$

 $\Delta \mathbf{H} = = \mathbf{v} \mathbf{e}$

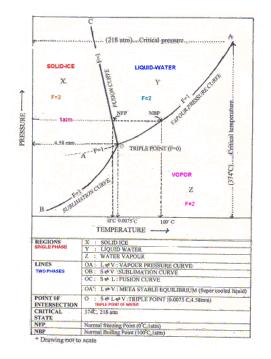
Hence, $dT/dp = T\Delta V / \Delta H = -ve$ *m.p decreases with pressure*

7 CLAUSIUS-CLAPEYRON EQUATION

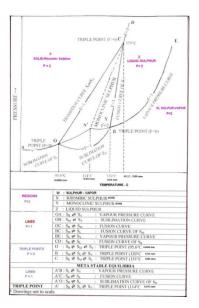
 $\Delta \mathbf{V} = \mathbf{V}_{\mathbf{g}} = \mathbf{RT/p}$ (For phase eq like L–V, S–V)

 $dp/dT = \Delta H/T \Delta V$ for any system

Hence, $d(\ln p)/dT = \Delta H_v / RT^2$

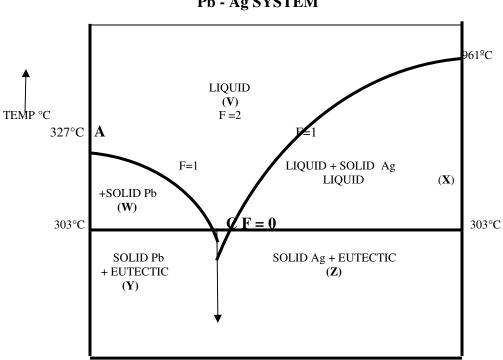

 $lnp = -\Delta H_v/RT + const$

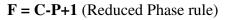
8 APPLICATIONS TO EQUILIBRIUM $(S-L, \Longrightarrow L-V, S-V)$


Determination of

 ΔH_v by the plot of **lnp vs 1/T**

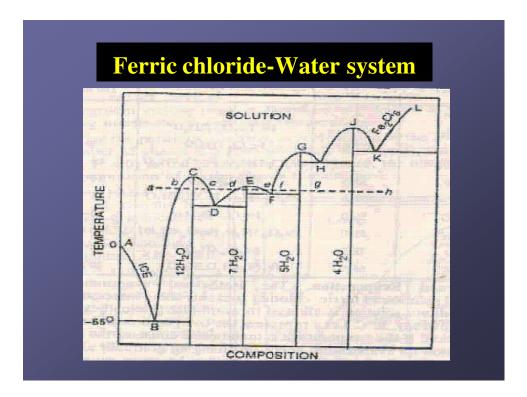
9 ONE-COMPONENT SYSTEMS: Water system.


Sulphur system


10 TWO COMPONENT SYSTEMS: F = C-P + 1 (Reduced Phase rule for two component

system)

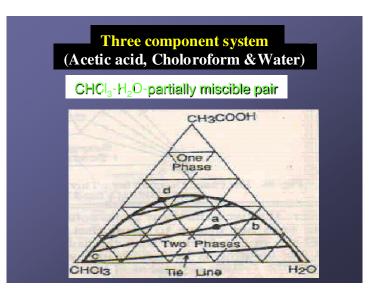
(i) Simple eutectic: Lead-silver system.



Pb - Ag SYSTEM

	V : Liquid	F = 2
	W : Liquid + Solid Pb	F = 2
REGIONS	X : Liquid + Solid Ag	F =2
	Y : Solid Pb + Eutectic	F= 2
	Z : Solid Ag + Eutectic	F =2
CURVES	AC : Freezing Point Curve of Lead $:Pb_{(i)} \longrightarrow Pb_{(s)}$	F =1
	BC : Freezing Point Curve of Silver : $Ag_{(l)} = Ag_{(s)}$	F =1
	A :Melting point of pure lead (327°C)	F =0
POINTS	B :Melting point of pure silver (961°)	F =0
	C :Eutectic Point (2.6% Ag & 303°C)	F =0

(ii) Formation of compound with congruent m.pt: Ferric chloride – water system.



PC-1(A): Phase equilibrium-Synopsis; Dr. A. DAYALAN, Professor of Chemistry 5

POSITIONS	PHASE (S) at Equilibrium		Р	Temp	F
Α	Ice _(s)	1	2	0°C	0
Curve-AB	$Ice_{(s)}$ + Solution of Fe_2Cl_6		2		1
В	$Ice_{(s)}$ + Solution of Fe_2Cl_6 + $Fe_2Cl_6.12H_2O_{(s)}$	2	3	-55°C	0
Curve-BC	Solution of $Fe_2Cl_6 + Fe_2Cl_6.12H_2O_{(s)}$	2	2		1
С	$Fe_2Cl_6.12H_2O_{(s)}$ + Solution of Fe_2Cl_6	1	2	37°C	0
Curve-CD	$Fe_2Cl_6.12H_2O_{(s)}$ + Solution of Fe_2Cl_6	2	2		1
D	$Fe_2Cl_6.12H_2O_{(s)}$ + Solution of Fe_2Cl_6 +	2	3	26°C	0
	$Fe_2Cl_6.7H_2O_{(s)}$				
Curve-DE	Solution of $Fe_2Cl_6 + Fe_2Cl_6.7H_2O_{(s)}$	2	2		1
Е	$Fe_2Cl_6.7H_2O_{(s)}$ + Solution of Fe_2Cl_6	1	2	32.5°C	0
Curve-EF	$Fe_2Cl_6.7H_2O_{(s)}$ + Solution of Fe_2Cl_6	2	2		1
F	$Fe_2Cl_6.7H_2O_{(s)}$ + Solution of Fe_2Cl_6 +	2	3	30°C	0
	$Fe_2Cl_6.5H_2O_{(s)}$				
Curve-FG	Solution of $Fe_2Cl_6 + Fe_2Cl_6.5H_2O_{(s)}$	2	2		1
G	$Fe_2Cl_6.5H_2O_{(s)}$ + Solution of Fe_2Cl_6	1	2	56°C	0
Curve- GH	$Fe_2Cl_6.5H_2O_{(s)}$ + Solution of Fe_2Cl_6	2	2		1
Н	$Fe_2Cl_6.5H_2O_{(s)}$ + Solution of Fe_2Cl_6 +	2	3	55°C	0
	$Fe_2Cl_6.4H_2O_{(s)}$				
Curve-HJ	Solution of $Fe_2Cl_6 + Fe_2Cl_6.4H_2O_{(s)}$	2	2		1
J	$Fe_2Cl_6.4H_2O_{(s)}$ + Solution of Fe_2Cl_6	1	2	73.5°C	0
Curve-JK	$Fe_2Cl_6.4H_2O_{(s)}$ + Solution of Fe_2Cl_6	2	2		1
K	$Fe_2Cl_6.4H2O_{(s)}$ + Solution of Fe_2Cl_6 + $Fe_2Cl_{6(s)}$	2	3	66°C	0
Curve- KL	Solution of $Fe_2Cl_6 + Fe_2Cl_{6(s)}$	2	2		1

11 THREE COMPONENT SYSTEMS: F = C-P (Reduced Phase rule for three component

system)

Three component systems having one partially miscible pairs.

12 FORMATION OF COMPOUND WITH INCONGRUENT MELTING POINT.(*Peritectic Change*): NaCl-H₂O System ; Na₂SO₄ - H₂O (Na₂SO₄ .10H₂O , 7H₂O , 4H₂O- Application to freeing mixture.

SOLUTIONS

1 **IDEAL SOLUTIONS**: (Vapor pressure- Composition diagram).

Follows Raoult's Law.

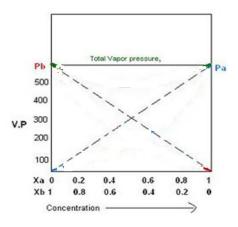


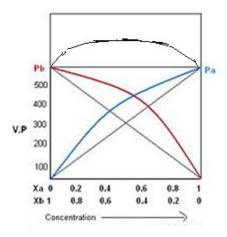
Fig-1: Ideal behavior (Type-I)

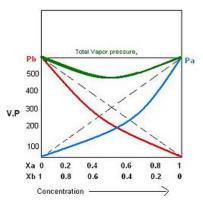
Examples (Type-I):

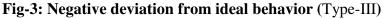
(i) Benzene-Toluene ; (ii) Benzene-Xylene ; (iii) n-Hexane-n-Heptane

2 **REAL SOLUTIONS**: (Vapor pressure-Composition diagram).

(a) Positive deviations from Raoult's law-(Type-II)



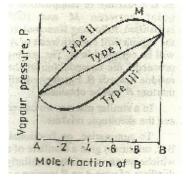

Fig-2: Positive deviation from ideal behavior (Type-II)


The **adhesive** forces between unlike molecules are **weaker** than the cohesive forces, between like molecules. This will lead both components to escape solution more easily.

Examples for Positive Deviation (Minimum BP) (Type-II)

(i) H_2O -CHCl₃; (ii) H_2O -C₂H₅OH; (iii) C₂H₅OH-CHCl₃

(b) Negative deviations from Raoult's law. (Type-III)



The **adhesive** forces between molecules of A & B are **stronger** than the cohesive forces between A & A or B & B. The vapor pressure of the solution is less than the expected vapor pressure from Raoult's law.

Examples for Negative Deviation: (Maximum BP) (Type-III)

(i) CHCl₃- CH₃COCH₃; (ii) CHCl₃- CH₃COOCH₃; (iii) H₂O-HCl

3 IDEAL & REAL SOLUTIONS: (v.p - Composition diagram).- A comparison

4 FRACTIONAL DISTILLATION (Binary systems)-IDEAL SOLUTION: Type-I

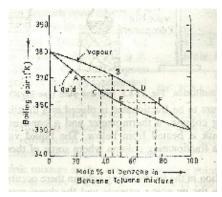


Fig-5: Distillation of Ideal Solution (Type-I)

- > The composition of VAPOR (distillate) Tends to Pure A or B (Low bp)
- > The composition of LIQUID (residue) Tends to Pure A or B (High bp)
- 5 BP-COMPOSITION (Azeotropic distillation)- (Min bp)-Positive Deviation- Type-II

(i) H₂O(373 K)-CHCl₃(334 K)

; Azeotrope (329 K , 2. 8% H₂O) ; Azeotrope (351.2 K , 4% H₂O)

- **(ii)H**₂**O**(373 K)-C₂H₅**OH**(351.3 K)
- (iii) CHCl₃(334 K)-CH₃OH (337.7 K) ; Azeotrope (326 K, 87.4% CHCl₃)

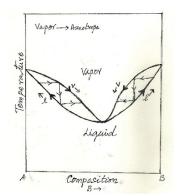
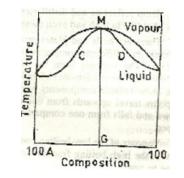



Fig-6: Distillation of Solution showing Positive Deviation (Type-II)

- > The composition of VAPOR (distillate) Tends to Azeotrope
- > The composition of LIQUID (residue) Tends to Pure A or B

6 BP-COMPOSITION(Azeotropic distillation)- (Max bp)-Negative Deviation- Type-III

Fig-7: Distillation of Solution showing Negative Deviation (Type-III)

> The composition of VAPOR (distillate) Tends to Pure A or B

> The composition of LIQUID (residue) Tends to Azeotrope

Example:

(i) CHCl₃ (334 K) - CH₃COCH₃ (330 K) ; Azeotrope (338K, 80% CHCl₃)

(ii)CHCl₃(334 K)- CH₃COOCH₃(330 K) ; Azeotrope (338K, 77% CHCl₃)

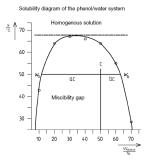
NB: (i) Azeotrope is a mixture

(ii) It is standard solution

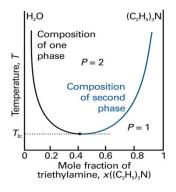
(iii) It can be further purified by some other methods

7 Steam distillation.

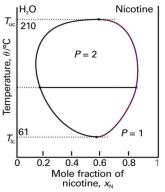
 $P_l + P_w =$ Atmospheric pressure


Requirements for Steam distillation: Immiscible & No reaction with water

Examples: Aniline, Benaldehyde, nitrobenzene


Advantage(s) of steam distillation: Boiling at low b.p

8 PARTIALLY MISCIBLE BINARY SYSTEMS (CST-UCST, LCST, and both UCST and LCST).


Miscibility temperature & Critical solution temperature (CST) UCST: *Phenol-Water* (UCST: 338.9K, 36% Phenol)

LCST: Triethhylamine-Water (LCST: 291.5K, 50% each)

UCST & LCST: Niccotine-Water (LCST:483K, 32% Nicotine ; UCST: 334K, 22% Nicotine)

9 EFFECT OF SOLUTE on CST. Phenol-Water (NaCl). Determination of conc of NaCl

10 SOLUBILITY OF GASES in liquids; Henry's law: m α p

Relationship with Raoult's law. **Solvent** (Raoult's law); **Solute** (Henry's law)

COLLIGATIVE PROPERTIES

Lowering of vapor pressure is the cause for all colligative properties

11 LOWERING OF VAPOR PRESSURE & Relative Lowering of vapor pressure

(RLP):

12 ELEVATION OF BOILING POINT (BP temperature at

which vp= atmosphereric pressure)

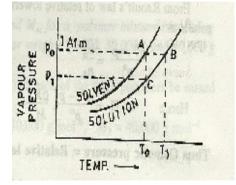


Fig-8: Vapor pressure-Temperature (Boiling)

$$\Delta \mathbf{T}_{\mathbf{b}} = \mathbf{K}_{\mathbf{b}} \mathbf{m} = \mathbf{K}_{\mathbf{b}} \mathbf{1000} \cdots \mathbf{M}_{2} \mathbf{w}_{1}$$

13 DEPRESSION OF FREEZING POINT(*Temperature at which vp of solid = vp of*

liquid)

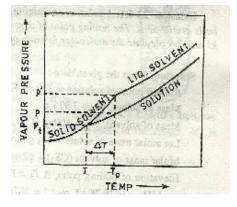


Fig-9: Vapor pressure-Temperature (Freezing)

$$\Delta \mathbf{T}_{\mathbf{f}} = \mathbf{K}_{\mathbf{f}} \mathbf{m} = \mathbf{K}_{\mathbf{f}} \mathbf{1000} \frac{\mathbf{w}_2}{\mathbf{m}_2 \mathbf{w}_1}$$

14 OSMOTIC PRESSURE(Semi permeable membrane-Osmosis-Osmotic pressure)

 $\pi V = nRT$ $\pi = \frac{nRT}{V} = \frac{W_2}{\dots RT} = CRT$ $M_2 V$

Vant Hoff's theory of dilute solutions. Vant Hoff's factor, i

Vant Hoff's factor, i must be 1 if there is no dissociation or association

Expected i values for different solutes:

Glocose = 1, NaCl = 2; $Al_2(SO_4)_3 = 5$; CH₃COOH = 0.5

The i values may differ from the expected values due to incomplete dissociation or association:

Glucose = 1, NaCl = 1 to 2; $Al_2(SO_4)_3 = 1$ to 5; $CH_3COOH = 1$ to 0.5

 $\alpha = \frac{i - 1}{n - 1}$

Analogy between solute particles and gas molecules.

15 DISTRIBUTION LAW: Nernst Distribution Law: Statement....!!!

Thermodynamic derivation

 $\mu_1 = \mu_1^{\circ} + RT \ln a_1 \text{ (For solvent-1)}$ $\mu_2 = \mu_2^{\circ} + RT \ln a_2 \text{ (For solvent-2)}$ $\mu_1 = \mu_2$

i.e., μ_1^{0} + RT lna₁ = μ_2^{0} + RT lna₂

 $RTln(a_{1/a_{2}}) = \mu_{2}^{o} - \mu_{1}^{o}$

$$\begin{array}{c} a_1 \\ \hline a_2 \\ a_2 \end{array} = \exp \left\{ \begin{array}{c} \mu_2^{o} - \mu_1^{o} \\ \hline RT \\ RT \end{array} \right\} = \text{Constant}$$

Limitations of the law:

- 1. Temperature must be constant
- 2. The concentration of the solute must very low
- 3. The solute must be in the same state in both solvent
- **4.** The solute should not increase the mutual solubility of the immiscible solvents.
- **5.** Soluble impurities should not react with the solute (KI & I_2 ; Cu²⁺ & NH₃)

Applications: Study of association, dissociation and solvation

S.No	Solvent-I	Solvent-II	Relationship	Comment
1	Normal	Normal	$\begin{array}{c} C_1 \\ K = \\ C_2 \end{array}$	Ideal distribution
2	Normal	Dissociated	$\begin{array}{c} C_1 \\ K = \\ C_2(1-\alpha_2) \end{array}$	
3	Normal	Associated $(nS)_1 \rightarrow (S_n)_2$	$K = \frac{C_1}{\sqrt[n]{C_2}}$	
4	Dissociated	Dissociated	$C_1(1-\alpha_1)$ $K =$	
5	Normal	Combines with Solvent (Solvation)	$K' = \frac{C_1}{C_2}$	Looks like Ideal distribution. But with different distribution coefficient

Formation of complex ions.

i) $I_2 + KI \rightarrow KI_3$ [Let the distribution be between water & an organic solvent]

Normal distribution coefficient,
$$K = \frac{C_{org}}{C_{aq}}$$
 (without KI)

Add KI of concentration and determine the concentration of I_2 in organic & aqueous layers

Corg

Free I_2 in aq layer = ----- = **x** K

 $[KI_3] = Combined I_2 in aq layer = C_{aq} - x = \mathbf{y}$

[KI] in aq layer = C-KI that has got complexed = C- y = z

Hence, the equilibrium constant, K for the reaction $I_2 + KI \rightarrow KI_3$ in aq layer can be determined.

ii) Similar treatment can be given to the equilibrium, $NH_3 + Cu^{2+} \rightarrow [Cu(NH_3)_4]^{2+}$

16 EXTRACTION WITH SOLVENTS

>Let V ml of a solvent-1 contain W g of the substance.

>Let \mathbf{v} ml of a second solvent (solvent-2) is used for extraction each time.

> Let the distribution coefficient $\mathbf{K} = \frac{C_1}{C_2}$

>Let w_1 g be the amount left un extracted at the end of first extraction

$$W_1/V$$

$$K = ------$$

$$(W- w_1)/v$$

$$w_1 = \begin{cases} KV \\ ----- \\ KV + v \end{cases} W$$

Let w₂ g be the amount of the substance left un extracted at the end of second extraction

$$W_2/V$$

$$K = \frac{W_2}{(W_1 - W_2)/V}$$
Hence, $W_2 = \begin{cases} KV \\ KV + v \end{cases} W_1$

 \succ Substituting for w₁ we get

$$w_2 = \begin{cases} KV \\ \hline KV + v \end{cases}^2 W$$

Let \mathbf{w}_n g be the amount of the substance left un extracted at the end of n^{th} extraction.

$$w_{n} = \begin{cases} KV \\ ----- \\ KV + v \end{cases}^{n} W$$

EFFICIENCY OF EXTRACTION

- For greater efficiency of extraction, the amount of the substance left un extracted at the end of n^{th} extraction, w_n must be less.
- ✤ The substance should have greater solubility in the extracting solvent.
- The extracting volume, v must be less with more number of extractions.