PC-1(A): PHASE EQULIBRIUM: SYNOPSIS

1 PHASE (P)-Physically distinct and mechanically separable
2 COMPONENTS (C)
Number of chemically independent chemical constituents by means of which the composition of each phase can be expressed. It is the number of chemical constituents -number of relationships among them
$\mathbf{A r}=$ One component
$\mathbf{A r}+\mathbf{N e}=$ Two components
$\mathbf{N}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \mathbf{+} \mathbf{N H}_{\mathbf{3}}=$ Three components
$\left.\mathbf{N}_{\mathbf{2}} \mathbf{+} \mathbf{H}_{\mathbf{2}} \mathbf{+} \mathbf{N H}_{\mathbf{3}} \mathbf{(7 7 3 K}\right)=$ Two components
$\mathbf{A}+\mathbf{B}+\mathbf{C}=$ Three components
$\mathbf{A}+\mathbf{B}+\mathbf{C} ; \mathbf{B}=\mathbf{C}=$ Two components
$\mathbf{N}_{\mathbf{2}} \mathbf{+} \mathbf{H}_{\mathbf{2}} \rightleftarrows \mathbf{N H}_{\mathbf{3}}=$ Two components (3-1=2); one chemical relation
$\mathrm{CaCO}_{3}+\mathbf{C a O}+\mathrm{CO}_{2}$ at room temperature, three components
$\mathrm{CaCO}_{3}+\mathbf{C a O}+\mathrm{CO}_{2}$ at high temperature, two components
$\mathrm{CaCO}_{3} \rightleftarrows+\mathbf{C a O}+\mathbf{C O}_{2}$ at high temperature, two components (3-1 =2)
3 DEGREES OF FREEDOM (F): It is the minimum number of variables like $\boldsymbol{p}, \boldsymbol{T} \boldsymbol{\&}$ concentration that must be specified to understand the system completely.

4 GIBB'S PHASE RULE, $\mathbf{F}=\mathbf{C - P}+\mathbf{2}$
5 DERIVATION OF THE PHASE RULE.
All components are distributed in all the phases

Equations:-

$\mu_{1}(1)=\mu_{2}(1)=\mu_{3}(1)=\mu_{4}(1) \ldots \ldots .=\mu_{P}(1)$ for the first component
(P-1) equations for each component in a phase
Total equations $=\mathbf{C}(\mathbf{P}-\mathbf{1})$ for all the components in all the phases

Variables:-

Concentration variable for each phase $=\mathrm{C}-1$
Total number of concentration variable for all the phases $=\mathrm{P}(\mathrm{C}-1)$
The physical variables $=2(\mathrm{p} \& \mathrm{~T})$
Total number of variables for the system $=\mathbf{P}(\mathbf{C - 1})+\mathbf{2}$
F = "No of Variables - No of Equations" $=\mathrm{P}(\mathrm{C}-1)+2-\mathrm{C}(\mathrm{P}-1)=\mathbf{C}-\mathbf{P}+\mathbf{2}$

$$
\begin{aligned}
& \mathbf{F}=\mathbf{C - P}+\mathbf{1}(\text { Reduced } \text { Phase rule for two component system }) \\
& \mathbf{F}=\mathbf{C}-\mathbf{P} \quad \text { (Reduced } \text { Phase rule for three component system) }
\end{aligned}
$$

6 CLAPEYRON EQUATION

$\mathbf{d G}=\mathbf{V d p}-\mathbf{S d T}=\mathbf{0}$ for eq process
$\mathbf{d p} / \mathbf{d T}=\Delta \mathbf{S} / \Delta \mathbf{V}=\Delta \mathbf{H} / \mathbf{T} \Delta \mathbf{V}$ for any system.

Application to ice water eqilibrium

$\Delta \mathbf{V}=\mathbf{V}_{\text {water }}-\mathbf{V}_{\text {ice }}=-\mathbf{v e}$
$\Delta H==v e$
Hence, $\mathbf{d T} / \mathbf{d p}=\mathbf{T} \Delta \mathbf{V} / \Delta \mathbf{H}=-\mathbf{v e}$ m.p decreases with pressure
7 CLAUSIUS-CLAPEYRON EQUATION

$$
\Delta \mathbf{V}=\mathbf{V}_{\mathbf{g}}=\mathbf{R T} / \mathbf{p} \text { (For phase eq like } \mathrm{L}-\mathrm{V}, \mathrm{~S}-\mathrm{V} \text {) }
$$

$\mathbf{d p} / \mathbf{d T}=\Delta \mathbf{H} / \mathbf{T} \Delta \mathbf{V}$ for any system
Hence, $\mathbf{d}(\mathbf{l n p}) / \mathbf{d T}=\Delta \mathbf{H}_{\mathrm{v}} / \mathbf{R T}^{\mathbf{2}}$

$$
\operatorname{lnp}=-\Delta H_{v} / \mathbf{R T}+\text { const }
$$

8 APPLICATIONS TO EQUILIBRIUM (S-L , $\Rightarrow \mathrm{L}-\mathrm{V}, \mathrm{S}-\mathrm{V}$) Determination of $\Delta \mathbf{H}_{\mathrm{v}}$ by the plot of $\ln \mathbf{p}$ vs $\mathbf{1 / T}$
9 ONE-COMPONENT SYSTEMS: Water system.

Sulphur system

10 TWO COMPONENT SYSTEMS: F = C-P +1 (Reduced Phase rule for two component system)
(i) Simple eutectic: Lead-silver system.

$$
\mathbf{F}=\mathbf{C}-\mathbf{P}+\mathbf{1} \text { (Reduced Phase rule) }
$$

REGIONS	$\mathrm{V}:$ Liquid	$\mathrm{F}=2$
	$\mathrm{~W}:$ Liquid + Solid Pb	$\mathrm{F}=2$
	$\mathrm{X}:$ Liquid + Solid Ag	$\mathrm{F}=2$
	$\mathrm{Y}:$ Solid $\mathrm{Pb}+$ Eutectic	$\mathrm{F}=2$
	$\mathrm{Z}:$ Solid $\mathrm{Ag}+$ Eutectic	$\mathrm{F}=2$
CURVES	$\mathrm{AC}:$ Freezing Point Curve of Lead $: \mathrm{Pb}_{(\mathrm{l})}=\mathrm{Pb}_{(\mathrm{s})}$	$\mathrm{F}=1$
	$\mathrm{BC}:$ Freezing Point Curve of Silver : $\mathrm{Ag}_{(\mathrm{l})}=\mathrm{Ag}_{(\mathrm{s})}$	$\mathrm{F}=1$
	$\mathrm{~A}:$ Melting point of pure lead $\left(327^{\circ} \mathrm{C}\right)$	$\mathrm{F}=0$
	$\mathrm{~B}:$:Melting point of pure silver $\left(961^{\circ}\right)$	$\mathrm{F}=0$
	$\mathrm{C}:$ Eutectic Point $\left(2.6 \% \mathrm{Ag} \& 303^{\circ} \mathrm{C}\right)$	$\mathrm{F}=0$

(ii) Formation of compound with congruent m.pt: Ferric chloride - water system.

Ferric chloride-Water system

POSITIONS	PHASE (S) at Equilibrium	C	P	Temp	F
A	$\mathrm{Ice}_{(\mathrm{s})}$	1	2	$0^{\circ} \mathrm{C}$	0
Curve-AB	Ice ${ }_{(s)}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	2	2		1
B	Ice ${ }_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}+\mathrm{Fe}_{2} \mathrm{Cl}_{6} .12 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$	2	3	$-55^{\circ} \mathrm{C}$	0
Curve-BC	Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}+\mathrm{Fe}_{2} \mathrm{Cl}_{6}$. $12 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$	2	2		1
C	$\mathrm{Fe}_{2} \mathrm{Cl}_{6} .12 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	1	2	$37^{\circ} \mathrm{C}$	0
Curve-CD	$\mathrm{Fe}_{2} \mathrm{Cl}_{6} .12 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	2	2		1
D	$\begin{aligned} & \mathrm{Fe}_{2} \mathrm{Cl}_{6} \cdot 12 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+\text { Solution of } \mathrm{Fe}_{2} \mathrm{Cl}_{6}+ \\ & \mathrm{Fe}_{2} \mathrm{Cl}_{6} \cdot 7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \\ & \hline \end{aligned}$	2	3	$26^{\circ} \mathrm{C}$	0
Curve-DE	Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}+\mathrm{Fe}_{2} \mathrm{Cl}_{6} .7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$	2	2		1
E	$\mathrm{Fe}_{2} \mathrm{Cl}_{6} .7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	1	2	$32.5{ }^{\circ} \mathrm{C}$	0
Curve-EF	$\mathrm{Fe}_{2} \mathrm{Cl}_{6} .7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	2	2		1
F	$\begin{aligned} & \mathrm{Fe}_{2} \mathrm{Cl}_{6} .7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+\text { Solution of } \mathrm{Fe}_{2} \mathrm{Cl}_{6}+ \\ & \mathrm{Fe}_{2} \mathrm{Cl}_{6} .5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \\ & \hline \end{aligned}$	2	3	$30^{\circ} \mathrm{C}$	0
Curve-FG	Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}+\mathrm{Fe}_{2} \mathrm{Cl}_{6} .5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$	2	2		1
G	$\mathrm{Fe}_{2} \mathrm{Cl}_{6} .5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	1	2	$56^{\circ} \mathrm{C}$	0
Curve- GH	$\mathrm{Fe}_{2} \mathrm{Cl}_{6} .5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	2	2		1
H	$\begin{aligned} & \mathrm{Fe}_{2} \mathrm{Cl}_{6} \cdot 5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+\text { Solution of } \mathrm{Fe}_{2} \mathrm{Cl}_{6}+ \\ & \mathrm{Fe}_{2} \mathrm{Cl}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \\ & \hline \end{aligned}$	2	3	$55^{\circ} \mathrm{C}$	0
Curve-HJ	Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}+\mathrm{Fe}_{2} \mathrm{Cl}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$	2	2		1
J	$\mathrm{Fe}_{2} \mathrm{Cl}_{6} .4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	1	2	$73.5{ }^{\circ} \mathrm{C}$	0
Curve-JK	$\mathrm{Fe}_{2} \mathrm{Cl}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	2	2		1
K	$\mathrm{Fe}_{2} \mathrm{Cl}_{6} .4 \mathrm{H} 2 \mathrm{O}_{(\mathrm{s})}+$ Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}+\mathrm{Fe}_{2} \mathrm{Cl}_{6(\mathrm{~s})}$	2	3	$66^{\circ} \mathrm{C}$	0
Curve- KL	Solution of $\mathrm{Fe}_{2} \mathrm{Cl}_{6}+\mathrm{Fe}_{2} \mathrm{Cl}_{6(\mathrm{~s})}$	2	2		1

11 THREE COMPONENT SYSTEMS: F = C-P (Reduced Phase rule for three component

 system)

Three component systems having one partially miscible pairs.

12 FORMATION OF COMPOUND WITH INCONGRUENT MELTING POINT.(Peritectic Change): $\mathrm{NaCl}-\mathbf{H}_{2} \mathrm{O}$ System ; $\mathrm{Na}_{2} \mathrm{SO}_{4}-\mathbf{H}_{2} \mathrm{O}\left(\mathrm{Na}_{2} \mathrm{SO}_{\mathbf{4}} \mathbf{. 1 0 H}_{2} \mathrm{O}\right.$, $\mathbf{7} \mathbf{H}_{2} \mathrm{O}, \mathbf{4 H}_{\mathbf{2}} \mathbf{O}$ - Application to freeing mixture.

SOLUTIONS

1 IDEAL SOLUTIONS: (Vapor pressure- Composition diagram).

Follows Raoult's Law.

Fig-1: Ideal behavior (Type-I)
Examples (Type-I):
(i) Benzene-Toluene ; (ii) Benzene-Xylene ; (iii) n-Hexane-n-Heptane

2 REAL SOLUTIONS: (Vapor pressure-Composition diagram).
(a)Positive deviations from Raoult's law-(Type-II)

Fig-2: Positive deviation from ideal behavior (Type-II)

The adhesive forces between unlike molecules are weaker than the cohesive forces, between like molecules. This will lead both components to escape solution more easily.

Examples for Positive Deviation (Minimum BP) (Type-II)
(i) $\mathrm{H}_{2} \mathrm{O}-\mathrm{CHCl}_{3}$; (ii) $\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$; (iii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{CHCl}_{3}$
(b) Negative deviations from Raoult's law. (Type-III)

Fig-3: Negative deviation from ideal behavior (Type-III)
The adhesive forces between molecules of $A \& B$ are stronger than the cohesive forces between A \& A or B \& B. The vapor pressure of the solution is less than the expected vapor pressure from Raoult's law.

Examples for Negative Deviation: (Maximum BP) (Type-III)
(i) $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{COCH}_{3}$; (ii) $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{COOCH}_{3}$; (iii) $\mathrm{H}_{2} \mathrm{O}-\mathrm{HCl}$

3 IDEAL \& REAL SOLUTIONS:(v.p -Composition diagram).- A comparison

Fig-4: Ideal (I), Positive (II) \& Negative (III) Deviations (Types-I, II \& III)

4 FRACTIONAL DISTILLATION (Binary systems)-IDEAL SOLUTION: Type-I

Fig-5: Distillation of Ideal Solution (Type-I)
$>$ The composition of VAPOR (distillate) Tends to Pure A or B (Low bp)
$>$ The composition of LIQUID (residue) Tends to Pure A or B (High bp)
5 BP-COMPOSITION (Azeotropic distillation)- (Min bp)-Positive Deviation- Type-II
(i) $\mathbf{H}_{\mathbf{2}} \mathbf{O}(373 \mathrm{~K})-\mathbf{C H C l}_{\mathbf{3}}(334 \mathrm{~K})$
(ii) $\mathbf{H}_{\mathbf{2}} \mathbf{O}(373 \mathrm{~K})-\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}} \mathbf{O H}(351.3 \mathrm{~K}) \quad$; Azeotrope ($351.2 \mathrm{~K}, 4 \% \mathbf{H}_{\mathbf{2}} \mathrm{O}$)
(iii) $\mathbf{C H C l}_{\mathbf{3}}(334 \mathrm{~K})-\mathbf{C H}_{\mathbf{3}} \mathbf{O H}(337.7 \mathrm{~K})$; Azeotrope ($326 \mathrm{~K}, 87.4 \% \mathbf{C H C l}_{\mathbf{3}}$)

Fig-6: Distillation of Solution showing Positive Deviation (Type-II)
$>$ The composition of VAPOR (distillate) Tends to Azeotrope
$>$ The composition of LIQUID (residue) Tends to Pure A or B

6 BP-COMPOSITION(Azeotropic distillation)- (Max bp)-Negative Deviation- Type-III

Fig-7: Distillation of Solution showing Negative Deviation (Type-III)
$>$ The composition of VAPOR (distillate) Tends to Pure A or B
$>$ The composition of LIQUID (residue) Tends to Azeotrope

Example:

(i) $\mathbf{C H C l}_{\mathbf{3}}(334 \mathrm{~K})-\mathbf{C H}_{\mathbf{3}} \mathbf{C O C H}_{\mathbf{3}}(330 \mathrm{~K})$; Azeotrope ($338 \mathrm{~K}, 80 \% \mathrm{CHCl}_{3}$)
(ii) $\mathbf{C H C l}_{\mathbf{3}}(334 \mathrm{~K})-\mathbf{C H}_{\mathbf{3}} \mathbf{C O O C H}_{\mathbf{3}}(330 \mathrm{~K})$; Azeotrope ($338 \mathrm{~K}, 77 \% \mathrm{CHCl}_{3}$)

NB: (i) Azeotrope is a mixture
(ii) It is standard solution
(iii) It can be further purified by some other methods

7 Steam distillation.
$\mathbf{P}_{\mathbf{I}}+\mathbf{P}_{\mathbf{w}}=$ Atmospheric pressure
Requirements for Steam distillation: Immiscible \& No reaction with water
Examples: Aniline, Benaldehyde, nitrobenzene
Advantage(s) of steam distillation: Boiling at low b.p
8 PARTIALLY MISCIBLE BINARY SYSTEMS (CST-UCST, LCST, and both UCST and LCST).

Miscibility temperature \& Critical solution temperature (CST)
UCST: Phenol-Water (UCST: 338.9K, 36\% Phenol)
Solubility diagram of the pheno/water system

LCST: Triethhylamine-Water (LCST: 291.5K, 50\% each)

UCST \& LCST: Niccotine-Water (LCST:483K, 32\% Nicotine ; UCST: 334K, 22\% Nicotine)

9 EFFECT OF SOLUTE on CST. Phenol-Water (NaCl). Determination of conc of NaCl 10 SOLUBILITY OF GASES in liquids; Henry's law: m α p Relationship with Raoult's law. Solvent (Raoult's law); Solute (Henry's law)

COLLIGATIVE PROPERTIES

Lowering of vapor pressure is the cause for all colligative properties
11 LOWERING OF VAPOR PRESSURE \& Relative Lowering of vapor pressure (RLP):

12 ELEVATION OF BOILING POINT ($B P$ temperature at which $v p=$ atmosphereric pressure)

Fig-8: Vapor pressure-Temperature (Boiling)

$$
\Delta T_{b}=K_{b} m=K_{b} 1000 \stackrel{\mathbf{w}_{2}}{-------} \underset{\mathbf{M}_{2} \mathbf{w}_{1}}{ }
$$

13 DEPRESSION OF FREEZING POINT(Temperature at which $v p$ of solid $=v p$ of liquid)

Fig-9: Vapor pressure-Temperature (Freezing)

$$
\Delta T_{f}=K_{f} m=K_{f} 1000 \stackrel{\mathbf{w}_{2}}{------} \underset{\mathbf{M}_{2} \mathbf{w}_{1}}{ }
$$

14 OSMOTIC PRESSURE(Semi permeable membrane-Osmosis-Osmotic pressure)

$$
\begin{aligned}
& \boldsymbol{\pi} V=n R T
\end{aligned}
$$

Vant Hoff's theory of dilute solutions. Vant Hoff's factor, i

Vant Hoff's factor, i must be 1 if there is no dissociation or association
Expected i values for different solutes:
Glocose $=1, \mathrm{NaCl}=2 ; \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=5 ; \mathrm{CH}_{3} \mathrm{COOH}=0.5$
The i values may differ from the expected values due to incomplete dissociation or association:

Glucose $=1, \mathrm{NaCl}=1$ to $2 ; \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=1$ to $5 ; \mathrm{CH}_{3} \mathrm{COOH}=1$ to 0.5

$$
\alpha=\frac{\mathrm{i}-1}{\mathrm{-}----1}
$$

Analogy between solute particles and gas molecules.
15 DISTRIBUTION LAW: Nernst Distribution Law: Statement....!!!

Thermodynamic derivation

$\mu_{1}=\mu_{1}{ }^{\circ}+$ RT lna_{1} (For solvent-1)
$\mu_{2}=\mu_{2}{ }^{\circ}+$ RT lna_{2} (For solvent-2)
$\mu_{1}=\mu_{2}$
i.e., $\mu_{1}{ }^{0}+$ RT $\operatorname{lna} a_{1}=\mu_{2}{ }^{0}+$ RT $\ln a_{2}$
$\mathrm{RT} \ln \left(\mathrm{a}_{1 / 2} \mathrm{a}_{2}\right)=\mu_{2}{ }^{\mathrm{o}}-\mu_{1}{ }^{\mathrm{o}}$

Limitations of the law:

1. Temperature must be constant
2. The concentration of the solute must very low
3. The solute must be in the same state in both solvent
4. The solute should not increase the mutual solubility of the immiscible solvents.
5. Soluble impurities should not react with the solute ($\mathrm{KI} \& \mathrm{I}_{2} ; \mathrm{Cu}^{2+} \& \mathrm{NH}_{3}$)

Applications: Study of association, dissociation and solvation

S.No	Solvent-I	Solvent-II	Relationship	Comment
1	Normal	Normal	$\mathrm{K}=\begin{gathered} \mathrm{C}_{1} \\ \mathrm{C}_{2} \\ \mathrm{C}_{2} \end{gathered}$	Ideal distribution
2	Normal	Dissociated	$K=\begin{gathered} C_{1} \\ C_{2}\left(1---\alpha_{2}\right) \end{gathered}$	
3	Normal	Associated $(\mathrm{nS})_{1} \rightarrow\left(\mathrm{~S}_{\mathrm{n}}\right)_{2}$	$\mathrm{K}=\stackrel{\mathrm{C}_{1}}{{ }^{\mathrm{n}}-\ldots---}$	
4	Dissociated	Dissociated	$\begin{array}{r} \mathrm{C}_{1}\left(1-\alpha_{1}\right) \\ \mathrm{K}=------ \\ \mathrm{C}_{2}\left(1-\alpha_{2}\right) \end{array}$	
5	Normal	Combines with Solvent (Solvation)	$\mathrm{K}^{\prime}=\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$	Looks like Ideal distribution. But with different distribution coefficient

Formation of complex ions.

i) $\mathbf{I}_{\mathbf{2}}+\mathbf{K I} \rightarrow \mathbf{K I}_{\mathbf{3}}$ [Let the distribution be between water \& an organic solvent]

Normal distribution coefficient, $K=\begin{gathered}\mathrm{C}_{\mathrm{org}} \\ \mathrm{C}_{\mathrm{aq}}\end{gathered}$ (without KI)
Add KI of concentration and determine the concentration of I_{2} in organic \& aqueous layers

Corg
Free I_{2} in aq layer $=------=\mathbf{x}$
$\left[\mathrm{KI}_{3}\right]=$ Combined I_{2} in aq layer $=\mathrm{C}_{\mathrm{aq}}-\mathrm{x}=\mathbf{y}$
$[\mathrm{KI}]$ in aq layer $=\mathrm{C}-\mathrm{KI}$ that has got complexed $=\mathrm{C}-\mathrm{y}=\mathbf{z}$
Hence, the equilibrium constant, K for the reaction $\mathbf{I}_{\mathbf{2}}+\mathbf{K I} \rightarrow \mathbf{K I}_{\mathbf{3}}$ in aq layer can be determined.
ii) Similar treatment can be given to the equilibrium, $\mathbf{N H}_{\mathbf{3}}+\mathbf{C u}^{\mathbf{2 +}} \rightarrow$ $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$

16 EXTRACTION WITH SOLVENTS

$>$ Let $\mathbf{V ~ m l}$ of a solvent-1 contain $\mathbf{W} g$ of the substance.
$>$ Let $\mathbf{v} \mathrm{ml}$ of a second solvent (solvent-2) is used for extraction each time.
C_{1}
$>$ Let the distribution coefficient $\mathbf{K}=-----$
$>$ Let $\mathbf{w}_{\mathbf{1}} \mathrm{g}$ be the amount left un extracted at the end of first extraction

$$
K=\frac{w_{1} / V}{\left(W-------w_{1}\right) / v}
$$

$$
w_{1}=\left\{\begin{array}{c}
K V \\
--------- \\
K V+v
\end{array}\right\} W
$$

$>$ Let $\mathbf{w}_{\mathbf{2}} \mathrm{g}$ be the amount of the substance left un extracted at the end of second extraction

$$
K=\stackrel{w_{2} / V}{\left(w_{1}-------w_{2}\right) / v}
$$

$$
\text { Hence, } w_{2}=\left\{\begin{array}{l}
\mathrm{KV} \\
\mathrm{KV}+-----\bar{v}
\end{array}\right\} \mathrm{w}_{1}
$$

$>$ Substituting for w_{1} we get

$$
w_{2}=\left\{\begin{array}{l}
K V \\
------- \\
K V+v
\end{array}\right\}^{2} W
$$

Let $\mathbf{w}_{\mathbf{n}} \mathrm{g}$ be the amount of the substance left un extracted at the end of $\mathrm{n}^{\text {th }}$ extraction.

$$
w_{n}=\left\{\begin{array}{c}
K V \\
-------- \\
K V+v
\end{array}\right\}^{n} W
$$

EFFICIENCY OF EXTRACTION

For greater efficiency of extraction, the amount of the substance left un extracted at the end of $\mathrm{n}^{\text {th }}$ extraction, W_{n} must be less.

* The substance should have greater solubility in the extracting solvent.
* The extracting volume, v must be less with more number of extractions.

